Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 434: 57-68, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27321970

RESUMO

Cardiac fibrosis evolves from the cardiac hypertrophic state. In this respect, estrogen and estrogen receptor beta (ERß) inhibit the effects of cardiac hypertrophic peptides that also stimulate fibrosis. Here we determine details of the anti-fibrotic functions of ERß. In acutely isolated rat cardiac fibroblasts. E2 or a specific ERß agonist (ßLGND2) blocked angiotensin II (AngII) signaling to fibrosis. This resulted from ERß activating protein kinase A and AMP kinase, inhibiting both AngII de-phosphorylation of RhoA and the resulting stimulation of Rho kinase. Inhibition of Rho kinase from ERß signaling resulted in marked decrease of TGFß expression, connective tissue growth factor production and function, matrix metalloproteinases 2 and 9 expression and activity, and the conversion of fibroblasts to myofibroblasts. Production of collagens I and III were also significantly decreased. Several important aspects were corroborated in-vivo from ßLGND2-treated mice that underwent AngII-induced cardiac hypertrophy. Thus, ERß in cardiac fibroblasts prevents key aspects of cardiac fibrosis development.


Assuntos
Angiotensina II/metabolismo , Cardiomegalia/metabolismo , Receptor beta de Estrogênio/metabolismo , Miofibroblastos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Cardiomegalia/patologia , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Receptor beta de Estrogênio/agonistas , Fibrose , Masculino , Camundongos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos
2.
FASEB J ; 30(1): 230-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26373802

RESUMO

Estrogen and estrogen receptor (ER)-α suppress visceral fat development through actions in several organs via unclear mechanisms that we sought to identify. Using mice that express only nuclear ER-α [nuclear-only ER-α (NOER) mice] or plasma membrane ER-α [membrane-only ER-α (MOER) mice], we found that 10-wk-old mice that lacked either receptor pool showed extensive abdominal visceral fat deposition and weight gain compared with wild-type (WT) mice. Differentiation of cultured bone marrow stem cells (BMSCs) into the adipocyte lineage was suppressed by 17-ß-estradiol (E2) in WT female mice but not in NOER or MOER mice. This finding correlated with E2 inhibition of prominent differentiation genes in WT BMSCs. In contrast, triglyceride content in differentiated BMSCs or 3T3-L1 cells was suppressed as a result of membrane ER-α signaling through several kinases to inhibit carbohydrate response element-binding protein-α and -ß. We concluded that extranuclear and nuclear ER-α collaborate to suppress adipocyte development, but inhibition of lipid synthesis in mature cells does not involve nuclear ER-α.


Assuntos
Adipogenia , Receptor alfa de Estrogênio/metabolismo , Triglicerídeos/metabolismo , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos
3.
Dev Cell ; 29(4): 482-90, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24871949

RESUMO

Steroid receptors are found in discrete cellular locations, but it is unknown whether extranuclear pools are necessary for normal organ development. To assess this, we developed a point mutant estrogen receptor α (ERα) knockin mouse (C451A) that precludes palmitoylation and membrane trafficking of the steroid receptor in all organs. Homozygous knockin female mice (nuclear-only ERα [NOER]) show loss of rapid signaling that occurs from membrane ERα in wild-type mice. Multiple developmental abnormalities were found, including infertility, relatively hypoplastic uteri, abnormal ovaries, stunted mammary gland ductal development, and abnormal pituitary hormone regulation in NOER mice. These abnormalities were rescued in heterozygous NOER mice that were comparable to wild-type mice. mRNAs implicated in organ development were often poorly stimulated by estrogen only in homozygous NOER mice. We conclude that many organs require membrane ERα and resulting signal transduction to collaborate with nuclear ERα for normal development and function.


Assuntos
Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Glândulas Mamárias Animais/embriologia , Organogênese , Ovário/embriologia , Acilação , Animais , Membrana Celular/genética , Núcleo Celular/genética , Feminino , Lipoilação , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ovulação/genética , RNA Mensageiro/genética , Transdução de Sinais , Transcrição Gênica
4.
Mol Biol Cell ; 24(24): 3805-18, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24152730

RESUMO

The development and progression of cardiac hypertrophy often leads to heart failure and death, and important modulators of hypertrophy include the histone deacetylase proteins (HDACs). Estrogen inhibits cardiac hypertrophy and progression in animal models and humans. We therefore investigated the influence of 17-ß-estradiol on the production, localization, and functions of prohypertrophic (class I) and antihypertrophic (class II) HDACs in cultured neonatal rat cardiomyocytes. 17-ß-Estradiol or estrogen receptor ß agonists dipropylnitrile and ß-LGND2 comparably suppressed angiotensin II-induced HDAC2 (class I) production, HDAC-activating phosphorylation, and the resulting prohypertrophic mRNA expression. In contrast, estrogenic compounds derepressed the opposite effects of angiotensin II on the same parameters for HDAC4 and 5 (class II), resulting in retention of these deacetylases in the nucleus to inhibit hypertrophic gene expression. Key aspects were confirmed in vivo from the hearts of wild-type but not estrogen receptor ß (ERß) gene-deleted mice administered angiotensin II and estrogenic compounds. Our results identify a novel dual regulation of cardiomyocyte HDACs, shown here for the antihypertrophic sex steroid acting at ERß. This mechanism potentially supports using ERß agonists as HDAC modulators to treat cardiac disease.


Assuntos
Cardiomegalia/prevenção & controle , Estradiol/agonistas , Receptor beta de Estrogênio/agonistas , Estrogênios/agonistas , Histona Desacetilase 2/biossíntese , Angiotensina II/farmacologia , Animais , Células Cultivadas , Feminino , Fator de Transcrição GATA4/genética , Coração/fisiologia , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/genética , Histona Desacetilases/biossíntese , Isoquinolinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Fosforilação/efeitos dos fármacos , Proteína Quinase C-delta/genética , RNA Mensageiro/biossíntese , Ratos , Proteínas Repressoras/biossíntese , Ativação Transcricional
5.
Biomaterials ; 34(38): 10228-37, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24055523

RESUMO

Drug resistance acquired by cancer cells is a significant challenge in the clinic and requires impairing the responsible pathological pathway. Administering chemotherapeutics along with silencing resistance-basis activity using RNA interference (RNAi) is expected to restore the activity of the chemotherapeutic and generate synergistic cancer eradication. This study attempted to reverse tamoxifen (TAM)-resistance in breast cancer by silencing a mitochondrial enzyme, manganese superoxide dismutase (MnSOD), which dismutates TAM-induced reactive oxygen species (ROS) (i.e., superoxide) to less harmful hydrogen peroxide and hampers therapeutic effects. Breast cancer cells were co-treated with TAM and MnSOD siRNA-delivering nanoparticles (NPs) made of a siRNA/poly(amidoamine) (PAMAM) dendriplex core and an acid-degradable polyketal (PK) shell. The (siRNA/PAMAM)-PK NPs were designed for the PK shell to shield siRNA from nucleases, minimize detrimental aggregation in serum, and facilitate cytosolic release of siRNA from endosomal compartments. This method of forming the PK shell around the siRNA/PAMAM core via surface-initiated photo-polymerization enables ease of tuning NPs' size for readily controlled siRNA release kinetics. The resulting NPs were notably homogenous in size, resistant to aggregation in serum, and invulnerable to heparan sulfate-mediated disassembly, compared to siRNA/PAMAM dendriplexes. Gel electrophoresis and confocal microscopy confirmed efficient siRNA release from the (siRNA/PAMAM)-PK NPs upon stimuli-responsive hydrolysis of the PK shell. Sensitization of TAM-resistant MCF7-BK-TR breast cancer cells with (MnSOD siRNA/PAMAM)-PK NPs restored TAM-induced cellular apoptosis in vitro and significantly suppressed tumor growth in vivo, as confirmed by biochemical assays and histological observations. This study implies that combined gene silencing and chemotherapy is a promising strategy to overcoming a significant challenge in cancer therapy.


Assuntos
Ácidos/química , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/química , Superóxido Dismutase/metabolismo , Tamoxifeno/química , Tamoxifeno/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Inativação Gênica/fisiologia , Humanos , Camundongos , Camundongos Nus , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Superóxido Dismutase/genética
6.
Endocrinology ; 154(11): 4352-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23970786

RESUMO

Cardiac hypertrophy in humans can progress to cardiac failure if the underlying impetus is poorly controlled. An important direct stimulator of hypertrophy and its progression is the angiotensin II (AngII) peptide. AngII also causes hypertension that indirectly contributes to cardiac hypertrophy. Others and we have shown that estrogens acting through the estrogen receptor (ER)-ß can inhibit AngII-induced or other forms of cardiac hypertrophy in mice. However, the proliferative effects of estrogen in breast and uterus that promote the development of malignancy preclude using the steroid to prevent cardiac disease progression. We therefore tested whether an ERß selective agonist, ß-LGND2, can prevent hypertension and cardiac pathology in female mice. AngII infusion over 3 weeks significantly stimulated systolic and diastolic hypertension, cardiac hypertrophy, and cardiac fibrosis, all significantly prevented by ß-LGND2 in wild-type but not in ERß genetically deleted mice. AngII stimulated the Akt kinase to phosphorylate and inhibit the glycogen synthase kinase-3ß kinase, leading to GATA4 transcription factor activation and hypertrophic mRNA expression. As a novel mechanism, all these actions were opposed by estradiol and ß-LGND2. Our findings provide additional understanding of the antihypertrophic effects of ERß and serve as an impetus to test specific receptor agonists in humans to prevent the worsening of cardiovascular disease.


Assuntos
Angiotensinas/toxicidade , Cardiomegalia/induzido quimicamente , Receptor beta de Estrogênio/agonistas , Isoquinolinas/farmacologia , Animais , Cardiomegalia/prevenção & controle , Estradiol/farmacologia , Feminino , Coração/efeitos dos fármacos , Camundongos , Miocárdio/patologia , Ovariectomia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
Sci Signal ; 6(276): ra36, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23695162

RESUMO

Estrogen induces signal transduction through estrogen receptor α (ERα), which localizes to both the plasma membrane and nucleus. Using wild-type mice, ERα knockout (ERKO) mice, or transgenic mice expressing only the ligand-binding domain of ERα exclusively at the plasma membrane (MOER), we compared the transcriptional profiles of liver tissue extracts after mice were injected with the ERα agonist propyl-pyrazole-triol (PPT). The expression of many lipid synthesis-related genes was comparably decreased in livers from MOER or wild-type mice but was not suppressed in ERKO mice, indicating that only membrane-localized ERα was necessary for their suppression. Cholesterol, triglyceride, and fatty acid content was decreased only in livers from wild-type and MOER mice exposed to PPT, but not in the livers from the ERKO mice, validating the membrane-driven signaling pathway on a physiological level. PPT-triggered activation of ERα at the membrane induced adenosine monophosphate-activated protein kinase to phosphorylate sterol regulatory element-binding factor 1 (Srebf1), preventing its association with and therefore its proteolytic cleavage by site-1 protease. Consequently, Srebf1 was sequestered in the cytoplasm, preventing the expression of cholesterol synthesis-associated genes. Thus, we showed that inhibition of gene expression mediated by membrane-localized ERα caused a metabolic phenotype that did not require nuclear ERα.


Assuntos
Estrogênios/fisiologia , Lipídeos/análise , Fígado/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Adenilato Quinase/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor alfa de Estrogênio/metabolismo , Fígado/citologia , Fígado/enzimologia , Camundongos , Camundongos Knockout , Ligação Proteica , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
8.
Mol Endocrinol ; 26(12): 2058-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23028062

RESUMO

Most cancers use glucose as substrate for aerobic glycolysis in preference to oxidative phosphorylation. However, variable glucose concentrations within the in-vivo tumor microenvironment may necessitate metabolic plasticity. Furthermore, little information exists on a role for estrogen receptors in modulating possible metabolic adaptations in breast cancer cells. Here we find that MCF-7 cells switch between metabolic pathways depending on glucose availability and 17ß-estradiol (E(2)) potentiates adaptation. In high glucose conditions E(2) up-regulates glycolysis via enhanced AKT kinase activity and suppresses tricarboxylic acid cycle activity. After a decrease in extracellular glucose, mitochondrial pathways are activated in preference to glycolysis. In this setting, E(2) suppresses glycolysis and rescues cell viability by stimulating the tricarboxylic acid cycle via the up-regulation of pyruvate dehydrogenase (PDH) activity. E(2) also increases ATP in low glucose-cultured cells, and the novel phosphorylation of PDH by AMP kinase is required for these metabolic compensations. Capitalizing on metabolic vulnerability, knockdown of PDH in the low-glucose state strongly potentiates ionizing radiation-induced apoptosis and reverses the cell survival effects of E(2). We propose that lowering glucose substrate and inhibiting PDH may augment adjuvant therapies for estrogen receptor-positive breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Glucose/metabolismo , Glicólise/genética , Cetona Oxirredutases/metabolismo , Trifosfato de Adenosina , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Ciclo do Ácido Cítrico , Estradiol/metabolismo , Feminino , Humanos , Cetona Oxirredutases/genética , Células MCF-7 , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Espécies Reativas de Oxigênio , Receptores de Estrogênio/metabolismo , Transdução de Sinais/genética , Microambiente Tumoral , Regulação para Cima
9.
Clin Cancer Res ; 18(21): 5911-23, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22896656

RESUMO

PURPOSE: More effective, less toxic treatments for recurrent ovarian cancer are needed. Although more than 60% of ovarian cancers express the estrogen receptor (ER), ER-targeted drugs have been disappointing due to drug resistance. In other estrogen-sensitive cancers, estrogen activates Src to phosphorylate p27 promoting its degradation and increasing cell-cycle progression. Because Src is activated in most ovarian cancers, we investigated whether combined Src and ER blockade by saracatinib and fulvestrant would circumvent antiestrogen resistance. EXPERIMENTAL DESIGN: ER and Src were assayed in 338 primary ovarian cancers. Dual ER and Src blockade effects on cell cycle, ER target gene expression, and survival were assayed in ERα+ ovarian cancer lines, a primary human ovarian cancer culture in vitro, and on xenograft growth. RESULTS: Most primary ovarian cancers express ER. Src activity was greater in ovarian cancer lines than normal epithelial lines. Estrogen activated Src, ER-Src binding, and ER translocation from cytoplasm to nucleus. Estrogen-mediated mitogenesis was via ERα, not ERß. While each alone had little effect, combined saracatinib and fulvestrant increased p27 and inhibited cyclin E-Cdk2 and cell-cycle progression. Saracatinib also impaired induction of ER-target genes c-Myc and FOSL1; this was greatest with dual therapy. Combined therapy induced autophagy and more effectively inhibited ovarian cancer xenograft growth than monotherapy. CONCLUSIONS: Saracatinib augments effects of fulvestrant by opposing estrogen-mediated Src activation and target gene expression, increasing cell-cycle arrest, and impairing survival, all of which would oppose antiestrogen resistance in these ER+ ovarian cancer models. These data support further preclinical and clinical evaluation of combined fulvestrant and saracatinib in ovarian cancer.


Assuntos
Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Resistencia a Medicamentos Antineoplásicos , Estradiol/análogos & derivados , Neoplasias Ovarianas/metabolismo , Quinazolinas/farmacologia , Receptores de Estrogênio/metabolismo , Quinases da Família src/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Benzodioxóis/administração & dosagem , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Estradiol/administração & dosagem , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Fulvestranto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Ligação Proteica , Transporte Proteico , Quinazolinas/administração & dosagem , Receptores de Estrogênio/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/genética
10.
Mol Biol Cell ; 23(1): 188-99, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031296

RESUMO

Classical estrogen, progesterone, and androgen receptors (ERs, PRs, and ARs) localize outside the nucleus at the plasma membrane of target cells. From the membrane, the receptors signal to activate kinase cascades that are essential for the modulation of transcription and nongenomic functions in many target cells. ER, PR, and AR trafficking to the membrane requires receptor palmitoylation by palmitoylacyltransferase (PAT) protein(s). However, the identity of the steroid receptor PAT(s) is unknown. We identified the DHHC-7 and -21 proteins as conserved PATs for the sex steroid receptors. From DHHC-7 and -21 knockdown studies, the PATs are required for endogenous ER, PR, and AR palmitoylation, membrane trafficking, and rapid signal transduction in cancer cells. Thus the DHHC-7 and -21 proteins are novel targets to selectively inhibit membrane sex steroid receptor localization and function.


Assuntos
Aciltransferases/metabolismo , Receptor alfa de Estrogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Progesterona/metabolismo , Acetiltransferases , Aciltransferases/genética , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Epigênese Genética , Estradiol/farmacologia , Estradiol/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipoilação , Sistema de Sinalização das MAP Quinases , Presenilina-2/genética , Presenilina-2/metabolismo , Ligação Proteica , Transporte Proteico , Interferência de RNA , Elementos de Resposta , Transcrição Gênica
11.
Cardiovasc Res ; 89(1): 119-28, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20724307

RESUMO

AIMS: we have previously shown that 17-ß-estradiol (E2) protects cardiomyocytes exposed to simulated ischaemia-reperfusion (I/R) by differentially regulating pro-apoptotic p38α mitogen-activated protein kinase (p38α MAPK) and pro-survival p38ß. However, little is known about how E2 modulation of these kinases alters apoptotic signalling. An attractive downstream target is p53, a well-known mediator of apoptosis and a substrate of p38α MAPK. The aim of this study was to determine whether the cytoprotective actions of oestrogen involve regulation of p53 via cardiac p38 MAPKs. METHODS AND RESULTS: cultured rat cardiomyocytes underwent hypoxia followed by reoxygenation (H/R) to simulate I/R. We found that inhibiting p53 significantly reduced apoptosis. Phosphorylation of p53 at serine 15 [p-p53(S15)] increased after H/R in a p38α MAPK- and reactive oxygen species (ROS)-dependent manner. E2 at 10 nM effectively inhibited p-p53(S15) and mitochondrial translocation of p53. Blocking p53 led to augmented p38ß activity and attenuated ROS, suggesting suppression of this antioxidant kinase by p53. The use of a specific agonist for each oestrogen receptor (ER) isoform, ERα and ERß, demonstrated that both isoforms participate in preventing cell death by inhibiting p53 in the mitochondria-centred apoptotic processes. CONCLUSION: our results demonstrate that during H/R stress, cardiomyocytes undergo p53-dependent apoptosis following phosphorylation of p53 by p38α MAPK, leading to p38ß suppression. E2 protects cardiomyocytes by inhibiting p38α-p53 signalling in apoptosis.


Assuntos
Estradiol/farmacologia , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Proteína Quinase 11 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Modelos Cardiovasculares , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/citologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Caracteres Sexuais , Proteína Supressora de Tumor p53/antagonistas & inibidores
12.
Mol Endocrinol ; 24(11): 2152-65, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20810711

RESUMO

Development of cardiac fibrosis portends the transition and deterioration from hypertrophy to dilation and heart failure. Here we examined how estrogen blocks this important development. Angiotensin II (AngII) and endothelin-1 induce cardiac hypertrophy and fibrosis in humans. and we find that these agents directly stimulate the transition of the cardiac fibroblast to a myofibroblast. AngII and endothelin-1 stimulated TGFß1 synthesis in the fibroblast, an inducer of fibrosis that signaled via c-jun kinase to Sma- and Mad-related protein 3 phosphorylation and nuclear translocation in myofibroblasts. As a result, mesenchymal proteins fibronectin and vimentin were produced, as were collagens I and III, the major forms found in fibrotic hearts. 17ß-Estradiol (E2) or dipropylnitrile, an estrogen receptor (ER)ß agonist, comparably blocked all these events, reversed by estrogen receptor (ER)ß small interfering RNA. E2 and dipropylnitrile signaling through cAMP and protein kinase A prevented myofibroblast formation and blocked activation of c-jun kinase and important events of fibrosis. In the hearts of ovariectomized female mice, cardiac hypertrophy and fibrosis were induced by AngII infusion and prevented by E2 administration to wild type but not ERß knockout rodents. Our results establish the cardiac fibroblast as an important target for hypertrophic/fibrosis-inducing peptides the actions of which were mitigated by E2/ERß acting in these stromal cells.


Assuntos
Receptor beta de Estrogênio/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Animais , AMP Cíclico/biossíntese , Estradiol/farmacologia , Feminino , Fibrose , Camundongos , Modelos Biológicos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo
13.
Mol Cell Biol ; 30(13): 3249-61, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20439495

RESUMO

Classical sex steroid receptors (SRs) localize at the plasma membranes (PMs) of cells, initiating signal transduction through kinase cascades that contribute to steroid hormone action. Palmitoylation of the SRs is required for membrane localization and function, but the proteins that facilitate this modification and subsequent receptor trafficking are unknown. Initially using a proteomic approach, we identified that heat shock protein 27 (Hsp27) binds to a motif in estrogen receptor alpha (ERalpha) and promotes palmitoylation of the SR. Hsp27-induced acylation occurred on the ERalpha monomer and augmented caveolin-1 interactions with ERalpha, resulting in membrane localization, kinase activation, and DNA synthesis in breast cancer cells. Oligomerization of Hsp27 was required, and similar results were found for the trafficking of endogenous progesterone and androgen receptors to the PMs of breast and prostate cancer cells, respectively. Small interfering RNA (siRNA) knockdown of Hsp27 prevented sex SR trafficking to and signaling from the membrane. These results identify a conserved and novel function for Hsp27 with potential as a target for interrupting signaling from membrane sex SRs to tumor biology in hormone-responsive cancers.


Assuntos
Membrana Celular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/fisiologia , Animais , Neoplasias da Mama/metabolismo , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Feminino , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/genética , Humanos , Lipoilação , Masculino , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Neoplasias da Próstata/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Androgênicos/genética
14.
Mol Biol Cell ; 20(14): 3374-89, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19477925

RESUMO

DNA damage activates the ataxia telangiectasia-mutated and Rad3-related (ATR) kinase signal cascade. How this system is restrained is not understood. We find that in estrogen receptor (ER)-positive breast cancer cells, UV or ionizing radiation and hydroxyurea rapidly activate ATR-dependent phosphorylation of endogenous p53 and Chk1. 17-beta-estradiol (E(2)) substantially blocks ATR activity via plasma membrane-localized ERalpha. E(2)/ER reduces the enhanced association of ATR andTopBP1 proteins that follows DNA damage and strongly correlates to ATR activity. E(2) inhibits ATR activation through rapid PI3K/AKT signaling: AKT phosphorylates TopBP1 at Serine 1159, thereby preventing the enhanced association of ATR with TopBP1 after DNA damage. E(2) also inhibits Claspin:Chk1 protein association via AKT phosphorylation of Chk1, preventing Chk1 signaling to the G2/M checkpoint. ATR-phosphorylation of p53 induces p21 transcription, prevented by E(2)/ER. E(2) delays the assembly and prolongs the resolution of gammaH2AX and Rad51 nuclear foci and delays DNA repair. E(2)/ER also increases the chromosomal damage seen from cell exposure to IR. Therefore, the restraint of ATR cascade activation may be a novel estrogen action relevant to breast cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Estradiol/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Transformada , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Especificidade por Substrato/efeitos dos fármacos
15.
J Biol Chem ; 284(6): 3488-95, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19054762

RESUMO

Estrogen receptors (ERs) alpha and beta exist as nuclear, cytoplasmic, and membrane cellular pools in a wide variety of organs. The relative contributions of each ERalpha pool to in vivo phenotypes resulting from estrogen signaling have not been determined. To address this, we generated a transgenic mouse expressing only a functional E domain of ERalpha at the plasma membrane (MOER). Cells isolated from many organs showed membrane only localized E domain of ERalpha and no other receptor pools. Liver cells from MOER and wild type mice responded to 17-beta-estradiol (E2) with comparable activation of ERK and phosphatidylinositol 3-kinase, not seen in cells from ERalphaKO mice. Mating the MOER female mice with proven male wild type breeders produced no pregnancies because the uterus and vagina of the MOER female mice were extremely atrophic. Ovaries of MOER and homozygous Strasbourg ERalphaKO mice showed multiple hemorrhagic cysts and no corpus luteum, and the mammary gland development in both MOER and ERalphaKO mice was rudimentary. Despite elevated serum E2 levels, serum LH was not suppressed, and prolactin levels were low in MOER mice. MOER and Strasbourg female mice showed plentiful abdominal visceral and other depots of fat and increased body weight compared to wild type mice despite comparable food consumption. These results provide strong evidence that the normal development and adult functions of important organs in female mice requires nuclear ERalpha and is not rescued by membrane ERalpha domain expression alone.


Assuntos
Membrana Celular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Fenótipo , Animais , Atrofia , Peso Corporal/genética , Membrana Celular/genética , Membrana Celular/patologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Corpo Lúteo/metabolismo , Corpo Lúteo/patologia , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/patologia , Ingestão de Alimentos/genética , Estradiol/sangue , Receptor alfa de Estrogênio/genética , Feminino , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Masculino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Estrutura Terciária de Proteína/genética , Transdução de Sinais/genética , Útero/crescimento & desenvolvimento , Útero/metabolismo , Útero/patologia , Vagina/crescimento & desenvolvimento , Vagina/metabolismo , Vagina/patologia
16.
Endocrinology ; 149(7): 3361-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18372323

RESUMO

Estrogen has been reported to prevent development of cardiac hypertrophy in female rodent models and in humans. However, the mechanisms of sex steroid action are incompletely understood. We determined the cellular effects by which 17beta-estradiol (E2) inhibits angiotensin II (AngII)-induced cardiac hypertrophy in vivo. Two weeks of angiotensin infusion in female mice resulted in marked hypertrophy of the left ventricle, exacerbated by the loss of ovarian steroid hormones from oophorectomy. Hypertrophy was 51% reversed by the administration of E2 (insertion of 0.1 mg/21-d-release tablets). The effects of E2 were mainly mediated by the estrogen receptor (ER) beta-isoform, because E2 had little effect in ERbeta-null mice but comparably inhibited AngII-induced hypertrophy in wild-type or ERalpha-null mice. AngII induced a switch of myosin heavy chain production from alpha to beta, but this was inhibited by E2 via ERbeta. AngII-induced ERK activation was also inhibited by E2 through the beta-receptor. E2 stimulated brain natriuretic peptide protein expression and substantially prevented ventricular interstitial cardiac fibrosis (collagen deposition) as induced by AngII. Importantly, E2 inhibited calcineurin activity that was stimulated by AngII, related to E2 stimulating the modulatory calcineurin-interacting protein (MCIP) 1 gene and protein expression. E2 acting mainly through ERbeta mitigates the important signaling by AngII that produces cardiac hypertrophy and fibrosis in female mice.


Assuntos
Calcineurina/metabolismo , Cardiomegalia/tratamento farmacológico , Receptor beta de Estrogênio/fisiologia , Estrogênios/farmacologia , Angiotensina II/farmacologia , Animais , Proteínas de Ligação ao Cálcio , Cardiomegalia/induzido quimicamente , Colágeno/metabolismo , Estradiol/farmacologia , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Fibrose , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Cadeias Pesadas de Miosina/metabolismo , Ovariectomia
17.
J Biol Chem ; 282(31): 22278-88, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17535799

RESUMO

Multiple steroid receptors (SR) have been proposed to localize to the plasma membrane. Some structural elements for membrane translocation of the estrogen receptor alpha (ER alpha) have been described, but the mechanisms relevant to other steroid receptors are entirely unknown. Here, we identify a highly conserved 9 amino acid motif in the ligand binding domains (E domains) of human/mouse ER alpha and ER beta, progesterone receptors A and B, and the androgen receptor. Mutation of the phenylalanine or tyrosine at position-2, cysteine at position 0, and hydrophobic isoleucine/leucine or leucine/leucine combinations at positions +5/6, relative to cysteine, significantly reduced membrane localization, MAP and PI 3-kinase activation, thymidine incorporation into DNA, and cell viability, stimulated by specific SR ligands. The localization sequence mediated palmitoylation of each SR, which facilitated caveolin-1 association, subsequent membrane localization, and steroid signaling. Palmitoylation within the E domain is therefore a crucial modification for membrane translocation and function of classical sex steroid receptors.


Assuntos
Membrana Celular/metabolismo , Receptores de Esteroides/metabolismo , Animais , Sequência de Bases , Células CHO , Caveolina 1/metabolismo , Cricetinae , Cricetulus , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Transdução de Sinais
18.
Mol Endocrinol ; 20(9): 1996-2009, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16645038

RESUMO

Although rapid signaling by estrogen at the plasma membrane is established, it is controversial as to the nature of the receptor protein. Estrogen may bind membrane proteins comparable to classical nuclear estrogen receptors (ERs), but some studies identify nonclassical receptors, such as G protein-coupled receptor (GPR)30. We took several approaches to define membrane-localized estrogen-binding proteins. In endothelial cells (ECs) from ERalpha/ERbeta combined-deleted mice, estradiol (E2) failed to specifically bind, and did not activate cAMP, ERK, or phosphatidyinositol 3-kinase or stimulate DNA synthesis. This is in contrast to wild-type ECs, indicating the lack of any functional estrogen-binding proteins in ERalpha/ERbeta combined-deleted ECs. To directly determine the identity of membrane and nuclear-localized ER, we isolated subcellular receptor pools from MCF7 cells. Putative ER proteins were trypsin digested and subjected to tandem array mass spectrometry. The output analysis identified membrane and nuclear E2-binding proteins as classical human ERalpha. We also determined whether GPR30 plays any role in E2 rapid actions. MCF7 (ER and GPR30 positive) and SKBR-3 (ER negative, GPR30 positive) cells were incubated with E2. Only MCF7 responded with significantly increased signaling. In MCF7, the response to E2 was not different in cells transfected with small interfering RNA to green fluorescent protein or GPR30. In contrast, interfering RNA to ERalpha or ER inhibition prevented rapid signaling and resulting biology in MCF7. In breast cancer and ECs, nuclear and membrane ERs are the same proteins. Furthermore, classical ERs mediate rapid signals induced by E2 in these cells.


Assuntos
Membrana Celular/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Estradiol/farmacologia , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/isolamento & purificação , Receptor beta de Estrogênio/deficiência , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/isolamento & purificação , Estrogênios/farmacologia , Humanos , Espectrometria de Massas , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos
19.
Mol Biol Cell ; 17(5): 2125-37, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16495339

RESUMO

Steroid hormones have been reported to indirectly impact mitochondrial functions, attributed to nuclear receptor-induced production of proteins that localize in this cytoplasmic organelle. Here we show high-affinity estrogen receptors in the mitochondria of MCF-7 breast cancer cells and endothelial cells, compatible with classical estrogen receptors ERalpha and ERbeta. We report that in MCF-7, estrogen inhibits UV radiation-induced cytochrome C release, the decrease of the mitochondrial membrane potential, and apoptotic cell death. UV stimulated the formation of mitochondrial reactive oxygen species (mROS), and mROS were essential to inducing mitochondrial events of cell death. mROS mediated the UV activation of c-jun N-terminal kinase (JNK), and protein kinase C (PKC) delta, underlying the subsequent translocation of Bax to the mitochondria where oligomerization was promoted. E2 (estradiol) inhibited all these events, directly acting in mitochondria to inhibit mROS by rapidly up-regulating manganese superoxide dismutase activity. We implicate novel functions of ER in the mitochondria of breast cancer that lead to the survival of the tumor cells.


Assuntos
Neoplasias da Mama/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Receptores de Estrogênio/análise , Receptores de Estrogênio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citocromos c/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/efeitos dos fármacos , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo
20.
J Biol Chem ; 281(10): 6760-7, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16407188

RESUMO

From human and animal studies, estrogen is known to protect the myocardium from an ischemic insult. However, there is limited knowledge regarding mechanisms by which estrogen directly protects cardiomyocytes. In this report, we employed an in vitro model, in which cultured rat cardiomyocytes underwent prolonged hypoxia followed by reoxygenation (H/R), to study the cardioprotective mechanism of estrogen. 17-beta-estradiol (E2) acting via estrogen receptors inhibited H/R-induced apoptosis of cardiomyocytes. Mitochondrial reactive oxygen species (ROS) generated from H/R activated p38alpha MAPK, and inhibition of p38alpha with SB203580 significantly prevented H/R-induced cell death. E2 suppressed ROS formation and p38alpha activation by H/R and concomitantly augmented the activity of p38beta. Unlike p38alpha, p38beta was little affected by H/R. Dominant negative p38beta protein expression decreased E2-mediated cardiomyocyte survival and ROS suppression during H/R stress. The prosurvival signaling molecule, phosphoinositol-3 kinase (PI3K), has previously been linked to cell survival following ischemia-reperfusion injury. Here, E2-activated PI3K was found to inhibit ROS generated from H/R injury, leading to inhibition of downstream p38alpha. We further linked these signaling pathways in that p38beta was activated by E2 stimulation of PI3K. Thus, E2 differentially modulated two major isoforms of p38, leading to cardiomyocyte survival. This was achieved by signaling through PI3K, integrating cell survival mediators.


Assuntos
Apoptose/fisiologia , Estradiol/fisiologia , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Células Cultivadas , Isoenzimas/antagonistas & inibidores , Isoenzimas/biossíntese , Isoenzimas/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/enzimologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA