Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(623): eabi7964, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878823

RESUMO

Endoreplication, duplication of the nuclear genome without cell division, occurs in disease to drive morphologic growth, cell fate, and function. Despite its criticality, the metabolic underpinnings of disease-induced endoreplication and its link to morphologic growth are unknown. Heart disease is characterized by endoreplication preceding cardiac hypertrophy. We identify ATP synthase as a central control node and determinant of cardiac endoreplication and hypertrophy by rechanneling free mitochondrial ADP to methylenetetrahydrofolate dehydrogenase 1 L (MTHFD1L), a mitochondrial localized rate-limiting enzyme of formate and de novo nucleotide biosynthesis. Concomitant activation of the adenosine monophosphate­activated protein kinase (AMPK)­retinoblastoma protein (Rb)-E2F axis co-opts metabolic products of MTHFD1L function to support DNA endoreplication and pathologic growth. Gain- and loss-of-function studies in genetic and surgical mouse heart disease models and correlation in individuals confirm direct coupling of deregulated energetics with endoreplication and pathologic overgrowth. Together, we identify cardiometabolic endoreplication as a hitherto unknown mechanism dictating pathologic growth progression in the failing myocardium.


Assuntos
Endorreduplicação , Cardiopatias , Animais , Ciclo Celular , Divisão Celular , Replicação do DNA , Camundongos
2.
Nature ; 593(7859): 435-439, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953403

RESUMO

Mitochondrial fission is a highly regulated process that, when disrupted, can alter metabolism, proliferation and apoptosis1-3. Dysregulation has been linked to neurodegeneration3,4, cardiovascular disease3 and cancer5. Key components of the fission machinery include the endoplasmic reticulum6 and actin7, which initiate constriction before dynamin-related protein 1 (DRP1)8 binds to the outer mitochondrial membrane via adaptor proteins9-11, to drive scission12. In the mitochondrial life cycle, fission enables both biogenesis of new mitochondria and clearance of dysfunctional mitochondria through mitophagy1,13. Current models of fission regulation cannot explain how those dual fates are decided. However, uncovering fate determinants is challenging, as fission is unpredictable, and mitochondrial morphology is heterogeneous, with ultrastructural features that are below the diffraction limit. Here, we used live-cell structured illumination microscopy to capture mitochondrial dynamics. By analysing hundreds of fissions in African green monkey Cos-7 cells and mouse cardiomyocytes, we discovered two functionally and mechanistically distinct types of fission. Division at the periphery enables damaged material to be shed into smaller mitochondria destined for mitophagy, whereas division at the midzone leads to the proliferation of mitochondria. Both types are mediated by DRP1, but endoplasmic reticulum- and actin-mediated pre-constriction and the adaptor MFF govern only midzone fission. Peripheral fission is preceded by lysosomal contact and is regulated by the mitochondrial outer membrane protein FIS1. These distinct molecular mechanisms explain how cells independently regulate fission, leading to distinct mitochondrial fates.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia , Actinas , Animais , Células COS , Sobrevivência Celular , Células Cultivadas , Chlorocebus aethiops , DNA Mitocondrial/análise , DNA Mitocondrial/metabolismo , Dinaminas , Retículo Endoplasmático , Humanos , Lisossomos , Proteínas de Membrana , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais
3.
Circulation ; 139(24): 2778-2792, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30922078

RESUMO

BACKGROUND: Enhancers are genomic regulatory elements conferring spatiotemporal and signal-dependent control of gene expression. Recent evidence suggests that enhancers can generate noncoding enhancer RNAs, but their (patho)biological functions remain largely elusive. METHODS: We performed chromatin immunoprecipitation-coupled sequencing of histone marks combined with RNA sequencing of left ventricular biopsies from experimental and genetic mouse models of human cardiac hypertrophy to identify transcripts revealing enhancer localization, conservation with the human genome, and hypoxia-inducible factor 1α dependence. The most promising candidate, hypoxia-inducible enhancer RNA ( HERNA)1, was further examined by investigating its capacity to modulate neighboring coding gene expression by binding to their gene promoters by using chromatin isolation by RNA purification and λN-BoxB tethering-based reporter assays. The role of HERNA1 and its neighboring genes for pathological stress-induced growth and contractile dysfunction, and the therapeutic potential of HERNA1 inhibition was studied in gapmer-mediated loss-of-function studies in vitro using human induced pluripotent stem cell-derived cardiomyocytes and various in vivo models of human pathological cardiac hypertrophy. RESULTS: HERNA1 is robustly induced on pathological stress. Production of HERNA1 is initiated by direct hypoxia-inducible factor 1α binding to a hypoxia-response element in the histoneH3-lysine27acetylation marks-enriched promoter of the enhancer and confers hypoxia responsiveness to nearby genes including synaptotagmin XVII, a member of the family of membrane-trafficking and Ca2+-sensing proteins and SMG1, encoding a phosphatidylinositol 3-kinase-related kinase. Consequently, a substrate of SMG1, ATP-dependent RNA helicase upframeshift 1, is hyperphoshorylated in a HERNA1- and SMG1-dependent manner. In vitro and in vivo inactivation of SMG1 and SYT17 revealed overlapping and distinct roles in modulating cardiac hypertrophy. Finally, in vivo administration of antisense oligonucleotides targeting HERNA1 protected mice from stress-induced pathological hypertrophy. The inhibition of HERNA1 postdisease development reversed left ventricular growth and dysfunction, resulting in increased overall survival. CONCLUSIONS: HERNA1 is a novel heart-specific noncoding RNA with key regulatory functions in modulating the growth, metabolic, and contractile gene program in disease, and reveals a molecular target amenable to therapeutic exploitation.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/prevenção & controle , Cardiomiopatia Hipertrófica/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , RNA não Traduzido/metabolismo , Animais , Sítios de Ligação , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
4.
Front Cardiovasc Med ; 5: 90, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087899

RESUMO

High aldehyde dehydrogenase (ALDHhi) activity has been reported in normal and cancer stem cells. We and others have shown previously that human ALDHhi cardiac atrial appendage cells are enriched with stem/progenitor cells. The role of ALDH in these cells is poorly understood but it may come down to the specific ALDH isoform(s) expressed. This study aimed to compare ALDHhi and ALDHlo atrial cells and to identify the isoform(s) that contribute to ALDH activity, and their functional role. Methods and Results: Cells were isolated from atrial appendage specimens from patients with ischemic and/or valvular heart disease undergoing heart surgery. ALDHhi activity assessed with the Aldefluor reagent coincided with primitive surface marker expression (CD34+). Depending on their ALDH activity, RT-PCR analysis of ALDHhi and ALDHlo cells demonstrated a differential pattern of pluripotency genes (Oct 4, Nanog) and genes for more established cardiac lineages (Nkx2.5, Tbx5, Mef2c, GATA4). ALDHhi cells, but not ALDHlo cells, formed clones and were culture-expanded. When cultured under cardiac differentiation conditions, ALDHhi cells gave rise to a higher number of cardiomyocytes compared with ALDHlo cells. Among 19 ALDH isoforms known in human, ALDH1A3 was most highly expressed in ALDHhi atrial cells. Knocking down ALDH1A3, but not ALDH1A1, ALDH1A2, ALDH2, ALDH4A1, or ALDH8A1 using siRNA decreased ALDH activity and cell proliferation in ALDHhi cells. Conversely, overexpressing ALDH1A3 with a retroviral vector increased proliferation in ALDHlo cells. Conclusions: ALDH1A3 is the key isoform responsible for ALDH activity in ALDHhi atrial appendage cells, which have a propensity to differentiate into cardiomyocytes. ALDH1A3 affects in vitro proliferation of these cells.

5.
Cardiovasc Res ; 109(1): 103-14, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26598511

RESUMO

AIMS: Mammalian target of rapamycin (mTOR), a central regulator of growth and metabolism, has tissue-specific functions depending on whether it is part of mTOR complex 1 (mTORC1) or mTORC2. We have previously shown that mTORC1 is required for adaptive cardiac hypertrophy and maintenance of function under basal and pressure-overload conditions. In the present study, we aimed to identify functions of mTORC2 in the heart. METHODS AND RESULTS: Using tamoxifen-inducible cardiomyocyte-specific gene deletion, we generated mice deficient for cardiac rapamycin-insensitive companion of mTOR (rictor), an essential and specific component of mTORC2. Under basal conditions, rictor deficiency did not affect cardiac growth and function in young mice and also had no effects in adult mice. However, transverse aortic constriction caused dysfunction in the rictor-deficient hearts, whereas function was maintained in controls after 1 week of pressure overload. Adaptive increases in cardiac weight and cardiomyocyte cross-sectional area, fibrosis, and hypertrophic and metabolic gene expression were not different between the rictor-deficient and control mice. In control mice, maintained function was associated with increased protein levels of rictor, protein kinase C (PKC)ßII, and PKCδ, whereas rictor ablation abolished these increases. Rictor deletion also significantly decreased PKCε at baseline and after pressure overload. Our data suggest that reduced PKCε and the inability to increase PKCßII and PKCδ abundance are, in accordance with their known function, responsible for decreased contractile performance of the rictor-deficient hearts. CONCLUSION: Our study demonstrates that mTORC2 is implicated in maintaining contractile function of the pressure-overloaded male mouse heart.


Assuntos
Cardiomegalia/fisiopatologia , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Função Ventricular/fisiologia , Animais , Apoptose , Proteínas de Transporte/fisiologia , Fibrose , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Fosfoproteínas/fisiologia , Fosforilação , Proteína Quinase C/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais
6.
Cardiovasc Res ; 108(1): 74-86, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26249804

RESUMO

AIMS: Notch1 signalling in the heart is mainly activated via expression of Jagged1 on the surface of cardiomyocytes. Notch controls cardiomyocyte proliferation and differentiation in the developing heart and regulates cardiac remodelling in the stressed adult heart. Besides canonical Notch receptor activation in signal-receiving cells, Notch ligands can also activate Notch receptor-independent responses in signal-sending cells via release of their intracellular domain. We evaluated therefore the importance of Jagged1 (J1) intracellular domain (ICD)-mediated pathways in the postnatal heart. METHODS AND RESULTS: In cardiomyocytes, Jagged1 releases J1ICD, which then translocates into the nucleus and down-regulates Notch transcriptional activity. To study the importance of J1ICD in cardiac homeostasis, we generated transgenic mice expressing a tamoxifen-inducible form of J1ICD, specifically in cardiomyocytes. Using this model, we demonstrate that J1ICD-mediated Notch inhibition diminishes proliferation in the neonatal cardiomyocyte population and promotes maturation. In the neonatal heart, a response via Wnt and Akt pathway activation is elicited as an attempt to compensate for the deficit in cardiomyocyte number resulting from J1ICD activation. In the stressed adult heart, J1ICD activation results in a dramatic reduction of the number of Notch signalling cardiomyocytes, blunts the hypertrophic response, and reduces the number of apoptotic cardiomyocytes. Consistently, this occurs concomitantly with a significant down-regulation of the phosphorylation of the Akt effectors ribosomal S6 protein (S6) and eukaryotic initiation factor 4E binding protein1 (4EBP1) controlling protein synthesis. CONCLUSIONS: Altogether, these data demonstrate the importance of J1ICD in the modulation of physiological and pathological hypertrophy, and reveal the existence of a novel pathway regulating cardiac homeostasis.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Homeostase , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/fisiologia , Miócitos Cardíacos/fisiologia , Receptor Notch1/fisiologia , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Proteína Jagged-1 , Proteínas de Membrana/química , Camundongos , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Serrate-Jagged , Via de Sinalização Wnt
7.
Eur Heart J ; 35(32): 2174-85, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23166366

RESUMO

AIMS: In the adult heart, Notch signalling regulates the response to injury. Notch inhibition leads to increased cardiomyocyte apoptosis, and exacerbates the development of cardiac hypertrophy and fibrosis. The role of Notch in the mesenchymal stromal cell fraction, which contains cardiac fibroblasts and cardiac precursor cells, is, however, largely unknown. In the present study, we evaluate, therefore, whether forced activation of the Notch pathway in mesenchymal stromal cells regulates pathological cardiac remodelling. METHODS AND RESULTS: We generated transgenic mice overexpressing the Notch ligand Jagged1 on the surface of cardiomyocytes to activate Notch signalling in adjacent myocyte and non-myocyte cells. In neonatal transgenic mice, activated Notch sustained cardiac precursor and myocyte proliferation after birth, and led to increased numbers of cardiac myocytes in adult mice. In the adult heart under pressure overload, Notch inhibited the development of cardiomyocyte hypertrophy and transforming growth factor-ß/connective tissue growth factor-mediated cardiac fibrosis. Most importantly, Notch activation in the stressed adult heart reduced the proliferation of myofibroblasts and stimulated the expansion of stem cell antigen-1-positive cells, and in particular of Nkx2.5-positive cardiac precursor cells. CONCLUSIONS: We conclude that Notch is pivotal in the healing process of the injured heart. Specifically, Notch regulates key cellular mechanisms in the mesenchymal stromal cell population, and thereby controls the balance between fibrotic and regenerative repair in the adult heart. Altogether, these findings indicate that Notch represents a unique therapeutic target for inducing regeneration in the adult heart via mobilization of cardiac precursor cells.


Assuntos
Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Remodelação Ventricular/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomegalia/fisiopatologia , Cardiomegalia/terapia , Proliferação de Células/fisiologia , Tamanho Celular , Constrição , Fibrose/metabolismo , Coração/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regeneração , Proteínas Serrate-Jagged , Serina-Treonina Quinases TOR/metabolismo , Fatores de Crescimento Transformadores/metabolismo
8.
PLoS One ; 8(9): e73294, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039904

RESUMO

Systemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hypertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload.


Assuntos
Cardiomegalia/metabolismo , Coração/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pressão , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética
9.
Cardiovasc Res ; 97(2): 219-29, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23090609

RESUMO

AIMS: Experimental autoimmune myocarditis (EAM) model mirrors important mechanisms of inflammatory dilated cardiomyopathy (iDCM). In EAM, inflammatory CD133(+) progenitors are a major cellular source of cardiac myofibroblasts in the post-inflammatory myocardium. We hypothesized that exogenous delivery of macrophage-colony-stimulating factor (M-CSF) can stimulate macrophage lineage differentiation of inflammatory progenitors and, therefore, prevent their naturally occurring myofibroblast fate in EAM. METHODS AND RESULTS: EAM was induced in wild-type (BALB/c) and nitric oxide synthase 2-deficient (Nos2(-/-)) mice and CD133(+) progenitors were isolated from inflamed hearts. In vitro, M-CSF converted inflammatory CD133(+) progenitors into nitric oxide-producing F4/80(+) macrophages and prevented transforming growth factor-ß-mediated myofibroblast differentiation. Importantly, only a subset of heart-infiltrating CD133(+) progenitors expresses macrophage-specific antigen F4/80 in EAM. These CD133(+)/F4/80(hi) cells show impaired myofibrogenic potential compared with CD133(+)/F4/80(-) cells. M-CSF treatment of wild-type mice with EAM at the peak of disease markedly increased CD133(+)/F4/80(hi) cells in the myocardium, and CD133(+) progenitors isolated from M-CSF-treated mice failed to differentiate into myofibroblasts. In contrast, M-CSF was not effective in converting CD133(+) progenitors from inflamed hearts of Nos2(-/-) mice into macrophages, and M-CSF treatment did not result in increased CD133(+)/F4/80(hi) cell population in hearts of Nos2(-/-) mice. Accordingly, M-CSF prevented post-inflammatory fibrosis and left ventricular dysfunction in wild-type but not in Nos2(-/-) mice. CONCLUSION: Active and NOS2-dependent induction of macrophage lineage differentiation abrogates the myofibrogenic potential of heart-infiltrating CD133(+) progenitors. Modulating the in vivo differentiation fate of specific progenitors might become a novel approach for the treatment of inflammatory heart diseases.


Assuntos
Antígenos CD/análise , Antígenos de Diferenciação/análise , Doenças Autoimunes/patologia , Glicoproteínas/análise , Macrófagos/citologia , Miocardite/patologia , Óxido Nítrico Sintase Tipo II/fisiologia , Peptídeos/análise , Células-Tronco/citologia , Antígeno AC133 , Sequência de Aminoácidos , Animais , Diferenciação Celular , Células Cultivadas , Fibrose , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Miocárdio/patologia , Fator de Crescimento Transformador beta/farmacologia , Disfunção Ventricular Esquerda/prevenção & controle
10.
PLoS One ; 7(7): e41032, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22859963

RESUMO

ß-blockers and ß-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective ß(1)-blocker, Atenolol (ate), and a ß-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the ß-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to ß-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Atenolol/farmacologia , Mapeamento Cromossômico , Isoproterenol/farmacologia , Polimorfismo de Nucleotídeo Único , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Feminino , Loci Gênicos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/genética , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Tamanho do Órgão/genética , Transcriptoma
11.
Tissue Eng Part A ; 18(1-2): 198-207, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21902604

RESUMO

Weakening of cardiac function in patients with heart failure results from a loss of cardiomyocytes in the damaged heart. Cell replacement therapies as a way to induce myocardial regeneration in humans could represent attractive alternatives to classical drug-based approaches. However, a suitable source of precursor cells, which could produce a functional myocardium after transplantation, remains to be identified. In the present study, we isolated cardiovascular precursor cells from ventricles of human fetal hearts at 12 weeks of gestation. These cells expressed Nkx2.5 but not late cardiac markers such as α-actinin and troponin I. In addition, proliferating cells expressed the mesenchymal stem cell markers CD73, CD90, and CD105. Evidence for functional cardiogenic differentiation in vitro was demonstrated by the upregulation of cardiac gene expression as well as the appearance of cells with organized sarcomeric structures. Importantly, differentiated cells presented spontaneous and triggered calcium signals. Differentiation into smooth muscle cells was also detected. In contrast, precursor cells did not produce endothelial cells. The engraftment and differentiation capacity of green fluorescent protein (GFP)-labeled cardiac precursor cells were then tested in vivo after transfer into the heart of immunodeficient severe combined immunodeficient mice. Engrafted human cells were readily detected in the mouse myocardium. These cells retained their cardiac commitment and differentiated into α-actinin-positive cardiomyocytes. Expression of connexin-43 at the interface between GFP-labeled and endogenous cardiomyocytes indicated that precursor-derived cells connected to the mouse myocardium. Together, these results suggest that human ventricular nonmyocyte cells isolated from fetal hearts represent a suitable source of precursors for cell replacement therapies.


Assuntos
Separação Celular/métodos , Coração Fetal/citologia , Células-Tronco/citologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos SCID , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo
12.
Circulation ; 123(10): 1073-82, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21357822

RESUMO

BACKGROUND: Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. METHODS AND RESULTS: We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and ß-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. CONCLUSIONS: Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.


Assuntos
Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Insuficiência Cardíaca/etiologia , Frequência Cardíaca/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose , Fator Natriurético Atrial/análise , Fator Natriurético Atrial/metabolismo , Autofagia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Fatores de Iniciação em Eucariotos , Expressão Gênica/fisiologia , Insuficiência Cardíaca/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/fisiologia , Cadeias Pesadas de Miosina/análise , Cadeias Pesadas de Miosina/metabolismo , Peptídeo Natriurético Encefálico/análise , Peptídeo Natriurético Encefálico/metabolismo , Miosina não Muscular Tipo IIB/análise , Miosina não Muscular Tipo IIB/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteína Regulatória Associada a mTOR , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
13.
Circ Res ; 105(9): 912-20, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19762681

RESUMO

RATIONALE: The myeloid differentiation factor (MyD)88/interleukin (IL)-1 axis activates self-antigen-presenting cells and promotes autoreactive CD4(+) T-cell expansion in experimental autoimmune myocarditis, a mouse model of inflammatory heart disease. OBJECTIVE: The aim of this study was to determine the role of MyD88 and IL-1 in the progression of acute myocarditis to an end-stage heart failure. METHODS AND RESULTS: Using alpha-myosin heavy chain peptide (MyHC-alpha)-loaded, activated dendritic cells, we induced myocarditis in wild-type and MyD88(-/-) mice with similar distributions of heart-infiltrating cell subsets and comparable CD4(+) T-cell responses. Injection of complete Freund's adjuvant (CFA) or MyHC-alpha/CFA into diseased mice promoted cardiac fibrosis, induced ventricular dilation, and impaired heart function in wild-type but not in MyD88(-/-) mice. Experiments with chimeric mice confirmed the bone marrow origin of the fibroblasts replacing inflammatory infiltrates and showed that MyD88 and IL-1 receptor type I signaling on bone marrow-derived cells was critical for development of cardiac fibrosis during progression to heart failure. CONCLUSIONS: Our findings indicate a critical role of MyD88/IL-1 signaling in the bone marrow compartment in postinflammatory cardiac fibrosis and heart failure and point to novel therapeutic strategies against inflammatory cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/imunologia , Insuficiência Cardíaca/imunologia , Interleucina-1beta/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Miocardite/imunologia , Miocárdio/imunologia , Transdução de Sinais , Animais , Autoimunidade , Transplante de Medula Óssea , Linfócitos T CD4-Positivos/imunologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/transplante , Modelos Animais de Doenças , Progressão da Doença , Fibroblastos/imunologia , Fibrose , Adjuvante de Freund , Proteínas de Fluorescência Verde/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Imunidade Inata , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Miocardite/complicações , Miocardite/patologia , Miocardite/fisiopatologia , Miocárdio/patologia , Cadeias Pesadas de Miosina/imunologia , Fenótipo , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Quimeras de Transplante
14.
Exp Cell Res ; 315(18): 3077-85, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19747911

RESUMO

Many cell types are currently being studied as potential sources of cardiomyocytes for cell transplantation therapy to repair and regenerate damaged myocardium. The question remains as to which progenitor cell represents the best candidate. Bone marrow-derived cells and endothelial progenitor cells have been tested in clinical studies. These cells are safe, but their cardiogenic potential is controversial. The functional benefits observed are probably due to enhanced angiogenesis, reduced ventricular remodeling, or to cytokine-mediated effects that promote the survival of endogenous cells. Human embryonic stem cells represent an unlimited source of cardiomyocytes due to their great differentiation potential, but each step of differentiation must be tightly controlled due to the high risk of teratoma formation. These cells, however, confront ethical barriers and there is a risk of graft rejection. These last two problems can be avoided by using induced pluripotent stem cells (iPS), which can be autologously derived, but the high risk of teratoma formation remains. Cardiac progenitor cells have the advantage of being cardiac committed, but important questions remain unanswered, such as what is the best marker to identify and isolate these cells? To date the different markers used to identify adult cardiac progenitor cells also recognize progenitor cells that are outside the heart. Thus, it cannot be determined whether the cardiac progenitor cells identified in the adult heart represent resident cells present since fetal life or extracardiac cells that colonized the heart after cardiac injury. Developmental studies have identified markers of multipotent progenitors, but it is unknown whether these markers are specific for adult progenitors when expressed in the adult myocardium. Cardiac regeneration is dependent on the stability of the cells transplanted into the host myocardium and on the electromechanical coupling with the endogenous cells. Finally, the promotion of endogenous regenerative processes by mobilizing endogenous progenitors represents a complementary approach to cell transplantation therapy.


Assuntos
Células-Tronco Embrionárias/transplante , Cardiopatias/cirurgia , Mioblastos/transplante , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/transplante , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Cardiopatias/imunologia , Humanos , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/metabolismo , Regeneração/fisiologia
15.
Cell Metab ; 9(6): 512-24, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19490906

RESUMO

Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.


Assuntos
Cardiomegalia/metabolismo , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metabolismo dos Lipídeos , PPAR gama/metabolismo , Animais , Apoptose , Ácidos Graxos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , PPAR gama/genética , Monoéster Fosfórico Hidrolases/metabolismo , Regulação para Cima , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
16.
Am J Physiol Heart Circ Physiol ; 296(4): H957-66, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19181960

RESUMO

Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in females has not been clearly established. The goal of this study was to investigate whether dietary omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet suppressed cardiac growth by 5% and 10% in WT and TG, respectively (P < 0.001). The extent of mechanical recovery [rate-pressure product (RPP) = beats/min x mmHg] of FO-fed WT and TG hearts was similar (50 +/- 7% vs. 45 +/- 12%, 30 min reperfusion), and this was not significantly different from CTR-fed WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 +/- 4% vs. 64 +/- 8%) was not enhanced compared with CTR-fed mice (RPP, 60 +/- 11% vs. 80 +/- 8%, P = 0.335). Dietary FO did not suppress the incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and arrhythmic activity postischemia in a murine ex vivo heart model.


Assuntos
Gorduras Insaturadas na Dieta/farmacologia , Óleos de Peixe/farmacologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , Traumatismo por Reperfusão/fisiopatologia , Angiotensina II/genética , Angiotensina II/metabolismo , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Animais , Arritmias Cardíacas/etiologia , Modelos Animais de Doenças , Estrogênios/metabolismo , Feminino , Predisposição Genética para Doença/genética , Hipertrofia/genética , Hipertrofia/prevenção & controle , Camundongos , Camundongos Transgênicos , Isquemia Miocárdica/complicações , Miocárdio/metabolismo , Ovariectomia , Traumatismo por Reperfusão/complicações
17.
J Mol Cell Cardiol ; 45(4): 495-504, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18410944

RESUMO

In the developing heart, Notch signaling plays an essential role in several key developmental processes, such as epithelial-to-mesenchymal transition and myocyte proliferation and differentiation. The importance of Notch in cardiac development has been demonstrated in knockout mice carrying null mutations in genes encoding components of the Notch pathway. Furthermore, humans with inactivating mutations in the Notch ligand Jagged1 suffer from Alagille syndrome, a condition characterized by several cardiac defects. Notch1 receptor haploinsufficiency has also been involved in aortic valve disease in humans. In addition, accumulating evidence indicates that Notch may also regulate homeostasis in the adult heart. Notch may protect the heart from an excessive and detrimental hypertrophic response and increase cardiomyocyte survival. Emerging evidence also suggests that Notch could be important for cardiac tissue renewal by controlling the maintenance and commitment of a cardiac stem cell compartment.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Coração/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Homeostase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Receptores Notch/genética , Proteínas Serrate-Jagged
18.
Cardiovasc Res ; 72(1): 152-62, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16901477

RESUMO

OBJECTIVE: We tested whether ischemic postconditioning (IPostC) is protective in remodeled myocardium. METHODS: Post-myocardial infarct (MI)-remodeled hearts after permanent coronary artery ligation and one kidney one clip (1K1C) hypertensive hearts of male Wistar rats were exposed to 40 min of ischemia followed by 90 min of reperfusion. IPostC was induced by six cycles of 10 s reperfusion interspersed by 10 s of no-flow ischemia. Activation of reperfusion injury salvage kinases was measured using Western blotting and in vitro kinase activity assays. RESULTS: IPostC prevented myocardial damage in both MI-remodeled and 1K1C hearts, as measured by decreased infarct size and lactate dehydrogenase release, and improved function. The reduction in infarct size and the recovery of left ventricular contractility achieved by IPostC was less in 1K1C hearts, but was unchanged in MI-remodeled hearts when compared to healthy hearts. In contrast, the recovery of inotropy was unaffected in 1K1C hearts, but was less in MI-remodeled hearts. Inhibition of the phosphatidylinositol 3-kinase (PI3K) pathway with LY294002 abolished the protective effects of IPostC on both disease models and healthy hearts. Western blot analysis in conjunction with in vitro kinase activity assays identified protein kinase B (PKB)/Akt but not p42/p44 extracellular-signal regulated kinase 1/2 (ERK1/2) as the predominant kinase in IPostC-mediated cardioprotection in remodeled hearts. IPostC increased phosphorylation of the PKB/Akt downstream targets eNOS, GSK3beta, and p70S6K in remodeled hearts. CONCLUSION: Our results offer evidence that IPostC mediates cardioprotection in the remodeled rat myocardium primarily via activation of the PI3K-PKB/Akt reperfusion injury salvage kinase pathway.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Actinas/metabolismo , Animais , Fator Natriurético Atrial/metabolismo , Western Blotting , Ativação Enzimática , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Reperfusão Miocárdica , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Perfusão , RNA Mensageiro/análise , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tubulina (Proteína)/metabolismo , Remodelação Ventricular
19.
Hypertension ; 46(2): 426-32, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15998712

RESUMO

Chronic elevation of plasma angiotensin II (Ang II) is detrimental to the heart. In addition to its hemodynamic effects, Ang II exerts cardiotrophic actions that contribute to cardiomyocyte remodeling. However, it remains to be clarified whether these direct actions of Ang II are sufficient to cause contractile dysfunction and heart failure in the absence of altered hemodynamic conditions. In this study, we used TG1306/1R (TG) mice that develop Ang II-mediated cardiac hypertrophy in absence of elevated blood pressure to investigate the phenotypic changes in cardiomyocytes during the adaptive response to chronic cardiac-specific endogenous Ang II stimulation. A 94-week longitudinal study demonstrated that TG mice develop dilated cardiomyopathy with aging and exhibit a significant increase in mortality compared with wild-type (WT) mice. Cardiac hypertrophy in TG mice is associated with cardiomyocyte hypertrophy (15 to 20 weeks: length +20%; 35 to 40 weeks: length +10%, width +15%) but not collagen deposition. In vivo analysis of cardiac function revealed age-dependent systolic and diastolic dysfunction in TG mice (approximately 45% reduction in dP/dtmax and dP/dtmin at 50 to 60 weeks of age compared with WT). Analysis of isolated cardiomyocyte isotonic shortening showed impaired contractility in TG cardiomyocytes (30% to 40% decrease in rates of shortening and lengthening). In TG hearts, chronic Ang II exposure induced downregulation of the sarcoplasmic reticulum calcium pump (SERCA2) and diminution of Ca2+ transients, indicative of an underlying disturbance in calcium homeostasis. In conclusion, chronic Ang II myocardial stimulation without hemodynamic overload is sufficient to produce cardiomyocyte and cardiac dysfunction culminating in heart failure.


Assuntos
Envelhecimento , Angiotensina II/metabolismo , Baixo Débito Cardíaco/etiologia , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/fisiopatologia , Miócitos Cardíacos , Remodelação Ventricular , Angiotensinogênio/genética , Animais , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Baixo Débito Cardíaco/mortalidade , Cardiomegalia/etiologia , Cardiomegalia/patologia , Cardiomiopatia Dilatada/mortalidade , Cardiomiopatia Dilatada/patologia , Masculino , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Fenótipo , Regiões Promotoras Genéticas , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
20.
J Clin Invest ; 115(7): 1724-33, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15951838

RESUMO

Recent evidence suggests that the heart possesses a greater regeneration capacity than previously thought. In the present study, we isolated undifferentiated precursors from the cardiac nonmyocyte cell population of neonatal hearts, expanded them in culture, and induced them to differentiate into functional cardiomyocytes. These cardiac precursors appear to express stem cell antigen-1 and demonstrate characteristics of multipotent precursors of mesodermal origin. Following infusion into normal recipients, these cells home to the heart and participate in physiological and pathophysiological cardiac remodeling. Cardiogenic differentiation in vitro and in vivo depends on FGF-2. Interestingly, this factor does not control the number of precursors but regulates the differentiation process. These findings suggest that, besides its angiogenic actions, FGF-2 could be used in vivo to facilitate the mobilization and differentiation of resident cardiac precursors in the treatment of cardiac diseases.


Assuntos
Fator 2 de Crescimento de Fibroblastos/fisiologia , Mioblastos Cardíacos/citologia , Miócitos Cardíacos/citologia , Animais , Antígenos Ly/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/deficiência , Fator 2 de Crescimento de Fibroblastos/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/fisiologia , Mioblastos Cardíacos/fisiologia , Miócitos Cardíacos/fisiologia , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA