Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 79: 101862, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141849

RESUMO

BACKGROUND AND OBJECTIVES: Since white adipose tissue (WAT) lacks parasympathetic cholinergic innervation, the source of the acetylcholine (ACh) acting on white adipocyte cholinergic receptors is unknown. This study was designed to identify ACh-producing cells in mouse and human visceral WAT and to determine whether a non-neuronal cholinergic system becomes activated in obese inflamed WAT. METHODS: Mouse epididymal WAT (eWAT) and human omental fat were studied in normal and obese subjects. The expression of the key molecules involved in cholinergic signaling was evaluated by qRT-PCR and western blotting whereas their tissue distribution and cellular localization were investigated by immunohistochemistry, confocal microscopy and in situ hybridization. ACh levels were measured by liquid chromatography/tandem mass spectrometry. The cellular effects of ACh were assessed in cultured human multipotent adipose-derived stem cell (hMADS) adipocytes. RESULTS: In mouse eWAT, diet-induced obesity modulated the expression of key cholinergic molecular components and, especially, raised the expression of choline acetyltransferase (ChAT), the ACh-synthesizing enzyme, which was chiefly detected in interstitial macrophages, in macrophages forming crown-like structures (CLSs), and in multinucleated giant cells (MGCs). The stromal vascular fraction of obese mouse eWAT contained significantly higher ACh and choline levels than that of control mice. ChAT was undetectable in omental fat from healthy subjects, whereas it was expressed in a number of interstitial macrophages, CLSs, and MGCs from some obese individuals. In hMADS adipocytes stressed with tumor necrosis factor α, ACh, alone or combined with rivastigmine, significantly blunted monocyte chemoattractant protein 1 and interleukin 6 expression, it partially but significantly, restored adiponectin and GLUT4 expression, and promoted glucose uptake. CONCLUSIONS: In mouse and human visceral WAT, obesity induces activation of a macrophage-dependent non-neuronal cholinergic system that is capable of exerting anti-inflammatory and insulin-sensitizing effects on white adipocytes.


Assuntos
Tecido Adiposo Branco , Sistema Colinérgico não Neuronal , Humanos , Camundongos , Animais , Camundongos Obesos , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Colinérgicos/metabolismo
3.
Nat Commun ; 14(1): 6777, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880212

RESUMO

Reprogramming of amino acid metabolism, sustained by oncogenic signaling, is crucial for cancer cell survival under nutrient limitation. Here we discovered that missense mutant p53 oncoproteins stimulate de novo serine/glycine synthesis and essential amino acids intake, promoting breast cancer growth. Mechanistically, mutant p53, unlike the wild-type counterpart, induces the expression of serine-synthesis-pathway enzymes and L-type amino acid transporter 1 (LAT1)/CD98 heavy chain heterodimer. This effect is exacerbated by amino acid shortage, representing a mutant p53-dependent metabolic adaptive response. When cells suffer amino acids scarcity, mutant p53 protein is stabilized and induces metabolic alterations and an amino acid transcriptional program that sustain cancer cell proliferation. In patient-derived tumor organoids, pharmacological targeting of either serine-synthesis-pathway and LAT1-mediated transport synergizes with amino acid shortage in blunting mutant p53-dependent growth. These findings reveal vulnerabilities potentially exploitable for tackling breast tumors bearing missense TP53 mutations.


Assuntos
Neoplasias da Mama , Proteína Supressora de Tumor p53 , Feminino , Humanos , Aminoácidos/metabolismo , Aminoácidos Essenciais , Neoplasias da Mama/patologia , Glicina , Transportador 1 de Aminoácidos Neutros Grandes/genética , Serina , Proteína Supressora de Tumor p53/genética
4.
Front Cell Dev Biol ; 11: 1071037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994106

RESUMO

Rewiring of mitochondrial metabolism has been described in different cancers as a key step for their progression. Calcium (Ca2+) signaling regulates mitochondrial function and is known to be altered in several malignancies, including triple negative breast cancer (TNBC). However, whether and how the alterations in Ca2+ signaling contribute to metabolic changes in TNBC has not been elucidated. Here, we found that TNBC cells display frequent, spontaneous inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations, which are sensed by mitochondria. By combining genetic, pharmacologic and metabolomics approaches, we associated this pathway with the regulation of fatty acid (FA) metabolism. Moreover, we demonstrated that these signaling routes promote TNBC cell migration in vitro, suggesting they might be explored to identify potential therapeutic targets.

5.
EMBO Mol Med ; 15(4): e17033, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36647689

RESUMO

Gyrate atrophy of choroid and retina (GACR) is a chorioretinal degeneration caused by pathogenic variants in the gene encoding ornithine aminotransferase (OAT), an enzyme mainly expressed in liver. Affected patients have increased ornithine concentrations in blood and other body fluids and develop progressive constriction of vision fields leading to blindness. Current therapies are unsatisfactory and better treatments are highly needed. In two mouse models of OAT deficiency that recapitulates biochemical and retinal changes of GACR, we investigated the efficacy of an intravenously injected serotype 8 adeno-associated (AAV8) vector expressing OAT under the control of a hepatocyte-specific promoter. Following injections, OAT-deficient mice showed reductions of ornithine concentrations in blood and eye cups compared with control mice injected with a vector expressing green fluorescent protein. AAV-injected mice showed improved electroretinogram response and partial restoration of retinal structure up to one-year post-injection. In summary, hepatic OAT expression by AAV8 vector was effective at correction of hyperornithinemia and improved function and structure of the retina. In conclusion, this study provides proof-of-concept of efficacy of liver-directed AAV-mediated gene therapy of GACR.


Assuntos
Atrofia Girata , Degeneração Retiniana , Animais , Camundongos , Atrofia Girata/genética , Atrofia Girata/patologia , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Ornitina/genética , Ornitina/metabolismo , Terapia Genética , Fígado/patologia
6.
J Cell Biol ; 220(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566069

RESUMO

The commitment of mesenchymal stem cells to preadipocytes is stimulated by hormonal induction. Preadipocytes induced to differentiate repress protein synthesis, remodel their cytoskeleton, and increase mitochondrial function to support anabolic pathways. These changes enable differentiation into mature adipocytes. Our understanding of the factors that coordinately regulate the early events of adipocyte differentiation remains incomplete. Here, by using multipronged approaches, we have identified zinc finger CCCH-type containing 10 (Zc3h10) as a critical regulator of the early stages of adipogenesis. Zc3h10 depletion in preadipocytes resulted in increased protein translation and impaired filamentous (F)-actin remodeling, with the latter detrimental effect leading to mitochondrial and metabolic dysfunction. These defects negatively affected differentiation to mature adipocytes. In contrast, Zc3h10 overexpression yielded mature adipocytes with remarkably increased lipid droplet size. Overall, our study establishes Zc3h10 as a fundamental proadipogenic transcription factor that represses protein synthesis and promotes F-actin/mitochondria dynamics to ensure proper energy metabolism and favor lipid accumulation.


Assuntos
Actinas/metabolismo , Adipogenia , Mitocôndrias/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Citoesqueleto de Actina/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Animais , Linhagem Celular , Ciclo do Ácido Cítrico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metabolismo Energético/genética , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Transcriptoma/genética , Proteínas rho de Ligação ao GTP/metabolismo
7.
Nat Genet ; 53(2): 215-229, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33526924

RESUMO

Naive epiblast and embryonic stem cells (ESCs) give rise to all cells of adults. Such developmental plasticity is associated with genome hypomethylation. Here, we show that LIF-Stat3 signaling induces genomic hypomethylation via metabolic reconfiguration. Stat3-/- ESCs show decreased α-ketoglutarate production from glutamine, leading to increased Dnmt3a and Dnmt3b expression and DNA methylation. Notably, genome methylation is dynamically controlled through modulation of α-ketoglutarate availability or Stat3 activation in mitochondria. Alpha-ketoglutarate links metabolism to the epigenome by reducing the expression of Otx2 and its targets Dnmt3a and Dnmt3b. Genetic inactivation of Otx2 or Dnmt3a and Dnmt3b results in genomic hypomethylation even in the absence of active LIF-Stat3. Stat3-/- ESCs show increased methylation at imprinting control regions and altered expression of cognate transcripts. Single-cell analyses of Stat3-/- embryos confirmed the dysregulated expression of Otx2, Dnmt3a and Dnmt3b as well as imprinted genes. Several cancers display Stat3 overactivation and abnormal DNA methylation; therefore, the molecular module that we describe might be exploited under pathological conditions.


Assuntos
Blastocisto/fisiologia , Metilação de DNA/fisiologia , Células-Tronco Embrionárias/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica , Histonas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Fator Inibidor de Leucemia/metabolismo , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/genética , DNA Metiltransferase 3B
8.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352696

RESUMO

COASY protein-associated neurodegeneration (CoPAN) is a rare but devastating genetic autosomal recessive disorder of inborn error of CoA metabolism, which shares with pantothenate kinase-associated neurodegeneration (PKAN) similar features, such as dystonia, parkinsonian traits, cognitive impairment, axonal neuropathy, and brain iron accumulation. These two disorders are part of the big group of neurodegenerations with brain iron accumulation (NBIA) for which no effective treatment is available at the moment. To date, the lack of a mammalian model, fully recapitulating the human disorder, has prevented the elucidation of pathogenesis and the development of therapeutic approaches. To gain new insights into the mechanisms linking CoA metabolism, iron dyshomeostasis, and neurodegeneration, we generated and characterized the first CoPAN disease mammalian model. Since CoA is a crucial metabolite, constitutive ablation of the Coasy gene is incompatible with life. On the contrary, a conditional neuronal-specific Coasy knock-out mouse model consistently developed a severe early onset neurological phenotype characterized by sensorimotor defects and dystonia-like movements, leading to premature death. For the first time, we highlighted defective brain iron homeostasis, elevation of iron, calcium, and magnesium, together with mitochondrial dysfunction. Surprisingly, total brain CoA levels were unchanged, and no signs of neurodegeneration were present.


Assuntos
Coenzima A Ligases/fisiologia , Hemocromatose/patologia , Ferro/metabolismo , Doenças Mitocondriais/patologia , Transtornos Motores/patologia , Neurodegeneração Associada a Pantotenato-Quinase/complicações , Sinapsinas/fisiologia , Animais , Coenzima A/metabolismo , Feminino , Hemocromatose/etiologia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/metabolismo , Transtornos Motores/etiologia , Transtornos Motores/metabolismo
9.
Cells ; 9(11)2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233365

RESUMO

Mitochondria represent the energy hub of cells and their function is under the constant influence of their tethering with other subcellular organelles. Mitochondria interact with the endoplasmic reticulum, lysosomes, cytoskeleton, peroxisomes, and nucleus in several ways, ranging from signal transduction, vesicle transport, and membrane contact sites, to regulate energy metabolism, biosynthetic processes, apoptosis, and cell turnover. Tumorigenesis is often associated with mitochondrial dysfunction, which could likely be the result of an altered interaction with different cell organelles or structures. The purpose of the present review is to provide an updated overview of the links between inter-organellar communications and interactions and metabolism in cancer cells, with a focus on mitochondria. The very recent publication of several reviews on these aspects testifies the great interest in the area. Here, we aim at (1) summarizing recent evidence supporting that the metabolic rewiring and adaptation observed in tumors deeply affect organelle dynamics and cellular functions and vice versa; (2) discussing insights on the underlying mechanisms, when available; and (3) critically presenting the gaps in the field that need to be filled, for a comprehensive understanding of tumor cells' biology. Chemo-resistance and druggable vulnerabilities of cancer cells related to the aspects mentioned above is also outlined.


Assuntos
Mitocôndrias/metabolismo , Neoplasias/metabolismo , Organelas/metabolismo , Apoptose , Carcinogênese , Sobrevivência Celular , Humanos
10.
Mol Metab ; 32: 97-108, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32029233

RESUMO

OBJECTIVE: Among obesity-associated metabolic diseases, non-alcoholic fatty liver disease (NAFLD) represents an increasing public health issue due to its emerging association with atherogenic dyslipidemia and cardiovascular diseases (CVDs). The lower prevalence of NAFLD in pre-menopausal women compared with men or post-menopausal women led us to hypothesize that the female-inherent ability to counteract this pathology might strongly rely on estrogen signaling. In female mammals, estrogen receptor alpha (ERα) is highly expressed in the liver, where it acts as a sensor of the nutritional status and adapts the metabolism to the reproductive needs. As in the male liver this receptor is little expressed, we here hypothesize that hepatic ERα might account for sex differences in the ability of males and females to cope with an excess of dietary lipids and counteract the accumulation of lipids in the liver. METHODS: Through liver metabolomics and transcriptomics we analyzed the relevance of hepatic ERα in the metabolic response of males and females to a diet highly enriched in fats (HFD) as a model of diet-induced obesity. RESULTS: The study shows that the hepatic ERα strongly contributes to the sex-specific response to an HFD and its action accounts for opposite consequences for hepatic health in males and females. CONCLUSION: This study identified hepatic ERα as a novel target for the design of sex-specific therapies against fatty liver and its cardio-metabolic consequences.


Assuntos
Dieta Hiperlipídica , Receptor alfa de Estrogênio/metabolismo , Lipídeos/administração & dosagem , Fígado/metabolismo , Caracteres Sexuais , Animais , Receptor alfa de Estrogênio/deficiência , Feminino , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo
11.
Nat Commun ; 10(1): 4887, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653834

RESUMO

Accumulation of DNA lesions causing transcription stress is associated with natural and accelerated aging and culminates with profound metabolic alterations. Our understanding of the mechanisms governing metabolic redesign upon genomic instability, however, is highly rudimentary. Using Ercc1-defective mice and Xpg knock-out mice, we demonstrate that combined defects in transcription-coupled DNA repair (TCR) and in nucleotide excision repair (NER) directly affect bioenergetics due to declined transcription, leading to increased ATP levels. This in turn inhibits glycolysis allosterically and favors glucose rerouting through the pentose phosphate shunt, eventually enhancing production of NADPH-reducing equivalents. In NER/TCR-defective mutants, augmented NADPH is not counterbalanced by increased production of pro-oxidants and thus pentose phosphate potentiation culminates in an over-reduced redox state. Skin fibroblasts from the TCR disease Cockayne syndrome confirm results in animal models. Overall, these findings unravel a mechanism connecting DNA damage and transcriptional stress to metabolic redesign and protective antioxidant defenses.


Assuntos
Trifosfato de Adenosina/metabolismo , Antioxidantes/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Glicólise/fisiologia , NADP/metabolismo , Via de Pentose Fosfato/fisiologia , Transcrição Gênica/genética , Regulação Alostérica , Animais , Síndrome de Cockayne/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Fibroblastos/metabolismo , Instabilidade Genômica , Metabolômica , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Oxirredução , Pele/citologia , Fatores de Transcrição/genética
12.
Nat Cell Biol ; 21(3): 338-347, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718857

RESUMO

Extracellular matrix (ECM) mechanical cues have powerful effects on cell proliferation, differentiation and death. Here, starting from an unbiased metabolomics approach, we identify synthesis of neutral lipids as a general response to mechanical signals delivered by cell-matrix adhesions. Extracellular physical cues reverberate on the mechanical properties of the Golgi apparatus and regulate the Lipin-1 phosphatidate phosphatase. Conditions of reduced actomyosin contractility lead to inhibition of Lipin-1, accumulation of SCAP/SREBP to the Golgi apparatus and activation of SREBP transcription factors, in turn driving lipid synthesis and accumulation. This occurs independently of YAP/TAZ, mTOR and AMPK, and in parallel to feedback control by sterols. Regulation of SREBP can be observed in a stiffened diseased tissue, and contributes to the pro-survival activity of ROCK inhibitors in pluripotent stem cells. We thus identify a general mechanism centered on Lipin-1 and SREBP that links the physical cell microenvironment to a key metabolic pathway.


Assuntos
Matriz Extracelular/metabolismo , Metabolismo dos Lipídeos , Fosfatidato Fosfatase/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Junções Célula-Matriz/metabolismo , Microambiente Celular , Sinais (Psicologia) , Complexo de Golgi/metabolismo , Humanos , Metabolômica/métodos , Transdução de Sinais
13.
Cell Metab ; 28(2): 256-267.e5, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29909969

RESUMO

Sex impacts on liver physiology with severe consequences for energy metabolism and response to xenobiotic, hepatic, and extra-hepatic diseases. The comprehension of the biology subtending sex-related hepatic differences is therefore very relevant in the medical, pharmacological, and dietary perspective. The extensive application of metabolomics paired to transcriptomics here shows that, in the case of short-term fasting, the decision to maintain lipid synthesis using amino acids (aa) as a source of fuel is the key discriminant for the hepatic metabolism of male and female mice. Pharmacological and genetic interventions indicate that the hepatic estrogen receptor (ERα) has a key role in this sex-related strategy that is primed around birth by the aromatase-dependent conversion of testosterone into estradiol. This energy partition strategy, possibly the result of an evolutionary pressure enabling mammals to tailor their reproductive capacities to nutritional status, is most important to direct future sex-specific dietary and medical interventions.


Assuntos
Aminoácidos/metabolismo , Receptor alfa de Estrogênio/fisiologia , Jejum/metabolismo , Lipogênese/fisiologia , Fígado/metabolismo , Caracteres Sexuais , Animais , Aromatase/metabolismo , Metabolismo Energético , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais
14.
J Neurochem ; 142(3): 420-428, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28467654

RESUMO

Neuroactive steroid levels are altered in several experimental models of peripheral neuropathy, and on this basis, they have been proposed as protective agents. For the first time, the levels of these molecules were assessed here in sterol regulatory element binding protein -1c knock-out male mice (i.e., an experimental model of peripheral neuropathy) and compared with observations in wild type animals. The levels of neuroactive steroids have been evaluated by liquid chromatography-tandem mass spectrometry in plasma and sciatic nerve at 2 and 10 months of age and these analyses were implemented analyzing the gene expression of crucial steroidogenic enzymes in sciatic nerve. Data obtained at 2 months of age showed high levels of pregnenolone in sciatic nerve, associated with low levels of its first metabolite, progesterone, and further metabolites (i.e., 5α-pregnane-3,20-dione and 5α-pregnan-3ß-ol-20-one). High levels of testosterone and 17ß-estradiol were also observed. At 10 months of age, the neuroactive steroid profile showed some differences. Indeed, low levels of pregnenolone and high levels of 5α-pregnan-3α-ol-20-one and 5α-pregnan-3ß-ol-20-one were observed. The analysis of the gene expression of steroidogenic enzymes considered here generally followed these changes. Interestingly, the levels of pregnenolone and progesterone were unmodified in plasma suggesting a specific effect of sterol regulatory element binding protein-1c on neurosteroidogenesis. Because this peripheral neuropathy is due to altered fatty acid biosynthesis, data reported here support the belief that the cross-talk between this biosynthetic pathway and neuroactive steroids may represent a possible therapeutic strategy for peripheral neuropathy.


Assuntos
Nervo Isquiático/metabolismo , Esteroides/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Cromatografia Líquida/métodos , Diabetes Mellitus Experimental/metabolismo , Camundongos Knockout , Progesterona/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA