Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; : 101366, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815928

RESUMO

BACKGROUND & AIMS: Type 2 innate lymphoid cells (ILC2s) and interleukin-13 (IL-13) promote the onset of spasmolytic polypeptide-expressing metaplasia (SPEM) cells. However, little is known about molecular effects of IL-13 in SPEM cells. We now sought to establish a reliable organoid model, Meta1 gastroids, to model SPEM cells in vitro. We evaluated cellular and molecular effects of ILC2s and IL-13 on maturation and proliferation of SPEM cells. METHODS: We performed single-cell RNA sequencing to characterize Meta1 gastroids, which were derived from stomachs of Mist1-Kras transgenic mice that displayed pyloric metaplasia. Cell sorting was used to isolate activated ILC2s from stomachs of IL-13-tdTomato reporter mice treated with L635. Three-dimensional co-culture was used to determine the effects of ILC2s on Meta1 gastroids. Mouse normal or metaplastic (Meta1) and human metaplastic gastroids were cultured with IL-13 to evaluate cell responses. Air-Liquid Interface culture was performed to test long-term culture effects of IL-13. In silico analysis determined possible STAT6-binding sites in gene promoter regions. STAT6 inhibition was performed to corroborate STAT6 role in SPEM cells maturation. RESULTS: Meta1 gastroids showed the characteristics of SPEM cell lineages in vitro even after several passages. We demonstrated that co-culture with ILC2s or IL-13 treatment can induce phosphorylation of STAT6 in Meta1 and normal gastroids and promote the maturation and proliferation of SPEM cell lineages. IL-13 upregulated expression of mucin-related proteins in human metaplastic gastroids. Inhibition of STAT6 blocked SPEM-related gene expression in Meta1 gastroids and maturation of SPEM in both normal and Meta1 gastroids. CONCLUSIONS: IL-13 promotes the maturation and proliferation of SPEM cells consistent with gastric mucosal regeneration.

2.
Am J Respir Crit Care Med ; 207(11): 1486-1497, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36952660

RESUMO

Rationale: Type 2 inflammation has been described in people with cystic fibrosis (CF). Whether loss of CFTR (cystic fibrosis transmembrane conductance regulator) function contributes directly to a type 2 inflammatory response has not been fully defined. Objectives: The potent alarmin IL-33 has emerged as a critical regulator of type 2 inflammation. We tested the hypothesis that CFTR deficiency increases IL-33 expression and/or release and deletion of IL-33 reduces allergen-induced inflammation in the CF lung. Methods: Human airway epithelial cells (AECs) grown from non-CF and CF cell lines and Cftr+/+ and Cftr-/- mice were used in this study. Pulmonary inflammation in Cftr+/+ and Cftr-/- mice with and without IL-33 or ST2 (IL-1 receptor-like 1) germline deletion was determined by histological analysis, BAL, and cytokine analysis. Measurements and Main Results: After allergen challenge, both CF human AECs and Cftr-/- mice had increased IL-33 expression compared with control AECs and Cftr+/+ mice, respectively. DUOX1 (dual oxidase 1) expression was increased in CF human AECs and Cftr-/- mouse lungs compared with control AECs and lungs from Cftr+/+ mice and was necessary for the increased IL-33 release in Cftr-/- mice compared with Cftr+/+ mice. IL-33 stimulation of Cftr-/- CD4+ T cells resulted in increased type 2 cytokine production compared with Cftr+/+ CD4+ T cells. Deletion of IL-33 or ST2 decreased both type 2 inflammation and neutrophil recruitment in Cftr-/- mice compared with Cftr+/+ mice. Conclusions: Absence of CFTR reprograms airway epithelial IL-33 release and licenses IL-33-dependent inflammation. Modulation of the IL-33/ST2 axis represents a novel therapeutic target in CF type 2-high and neutrophilic inflammation.


Assuntos
Fibrose Cística , Camundongos , Animais , Humanos , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Interleucina-33/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Alérgenos , Células Epiteliais/metabolismo
5.
Front Allergy ; 3: 1094259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704754

RESUMO

The sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) regulate the effector functions of group 2 innate lymphoid cells (ILC2s) through ß2 adrenergic receptor (ADRB2) and nicotinic/muscarinic cholinergic receptor signaling, respectively. To further maintain the critical balance between host-protective and pathogenic type 2 inflammation in the lungs, neuropeptides neuromedin B (NMB) and neuromedin U (NMU) function to suppress or promote ILC2 responses in synergy with IL-33/IL-25, respectively. Additionally, the release of ATP into the extracellular environment in response to cell death caused by challenge to the airway epithelial barrier quickly becomes converted into adenosine, which helps keep the inflammatory response in check by suppressing ILC2 responses. Besides neurotransmitter and neuropeptides derived from other cells, ILC2s further regulate allergic airway inflammation through the production of acetylcholine (ACh) and calcitonin gene-related peptide (CGRP). In this article we review the neuromodulation of ILC2s through cholinergic and adrenergic signaling, neuropeptides, and adenosine and its role in allergic airway inflammation. Furthermore, we discuss the potential clinical utility of targeting these pathways for therapeutic goals and address directions for future research.

6.
Respir Res ; 22(1): 206, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266437

RESUMO

BACKGROUND: Respiratory viral infections are one of the leading causes of need for emergency care and hospitalizations in asthmatic individuals, and airway-secreted cytokines are released within hours of viral infection to initiate these exacerbations. IL-33, specifically, contributes to these allergic exacerbations by amplifying type 2 inflammation. We hypothesized that blocking IL-33 in RSV-induced exacerbation would significantly reduce allergic inflammation. METHODS: Sensitized BALB/c mice were challenged with aerosolized ovalbumin (OVA) to establish allergic inflammation, followed by RSV-A2 infection to yield four treatment groups: saline only (Saline), RSV-infected alone (RSV), OVA alone (OVA), and OVA-treated with RSV infection (OVA-RSV). Lung outcomes included lung mRNA and protein markers of allergic inflammation, histology for mucus cell metaplasia and lung immune cell influx by cytospin and flow cytometry. RESULTS: While thymic stromal lymphopoietin (TSLP) and IL-33 were detected 6 h after RSV infection in the OVA-RSV mice, IL-23 protein was uniquely upregulated in RSV-infected mice alone. OVA-RSV animals varied from RSV- or OVA-treated mice as they had increased lung eosinophils, neutrophils, group 2 innate lymphoid cells (ILC2) and group 3 innate lymphoid cells (ILC3) detectable as early as 6 h after RSV infection. Neutralized IL-33 significantly reduced ILC2 and eosinophils, and the prototypical allergic proteins, IL-5, IL-13, CCL17 and CCL22 in OVA-RSV mice. Numbers of neutrophils and ILC3 were also reduced with anti-IL-33 treatment in both RSV and OVA-RSV treated animals as well. CONCLUSIONS: Taken together, our findings indicate a broad reduction in allergic-proinflammatory events mediated by IL-33 neutralization in RSV-induced asthma exacerbation.


Assuntos
Asma/metabolismo , Asma/virologia , Interleucina-33/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sinciciais Respiratórios , Animais , Asma/induzido quimicamente , Asma/imunologia , Feminino , Interleucina-33/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/toxicidade , Infecções por Vírus Respiratório Sincicial/imunologia
8.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115881

RESUMO

This study identified a genotype of respiratory syncytial virus (RSV) associated with increased acute respiratory disease severity in a cohort of previously healthy term infants. The genotype (2stop+A4G) consists of two components. The A4G component is a prevalent point mutation in the 4th position of the gene end transcription termination signal of the G gene of currently circulating RSV strains. The 2stop component is two tandem stop codons at the G gene terminus, preceding the gene end transcription termination signal. To investigate the biological role of these RSV G gene mutations, recombinant RSV strains harboring either a wild-type A2 strain G gene (one stop codon preceding a wild-type gene end signal), an A4G gene end signal preceded by one stop codon, or the 2stop+A4G virulence-associated combination were generated and characterized. Infection with the recombinant A4G (rA4G) RSV mutant resulted in transcriptional readthrough and lower G and fusion (F) protein levels than for the wild type. Addition of a second stop codon preceding the A4G point mutation (2stop+A4G) restored G protein expression but retained lower F protein levels. These data suggest that RSV G and F glycoprotein expression is regulated by transcriptional and translational readthrough. Notably, while rA4G and r2stop+A4G RSV were attenuated in cells and in naive BALB/c mice compared to that for wild-type RSV, the r2stop+A4G RSV was better able to infect BALB/c mice in the presence of preexisting immunity than rA4G RSV. Together, these factors may contribute to the maintenance and virulence of the 2stop+A4G genotype in currently circulating RSV-A strains.IMPORTANCE Strain-specific differences in respiratory syncytial virus (RSV) isolates are associated with differential pathogenesis in mice. However, the role of RSV genotypes in human infection is incompletely understood. This work demonstrates that one such genotype, 2stop+A4G, present in the RSV attachment (G) gene terminus is associated with greater infant disease severity. The genotype consists of two tandem stop codons preceding an A-to-G point mutation in the 4th position of the G gene end transcription termination signal. Virologically, the 2stop+A4G RSV genotype results in reduced levels of the RSV fusion (F) glycoprotein. A recombinant 2stop+A4G RSV was better able to establish infection in the presence of existing RSV immunity than a virus harboring the common A4G mutation. These data suggest that regulation of G and F expression has implications for virulence and, potentially, immune evasion.


Assuntos
Evasão da Resposta Imune/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/patogenicidade , Proteínas Virais de Fusão/genética , Animais , Linhagem Celular , Regulação Viral da Expressão Gênica , Genótipo , Humanos , Lactente , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Filogenia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Índice de Gravidade de Doença , Proteínas Virais de Fusão/imunologia , Carga Viral/genética , Virulência/genética , Replicação Viral/genética
9.
Gastroenterology ; 159(6): 2077-2091.e8, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891625

RESUMO

BACKGROUND & AIMS: Severe injury to the lining of the stomach leads to changes in the epithelium (reprogramming) that protect and promote repair of the tissue, including development of spasmolytic polypeptide-expressing metaplasia (SPEM) and tuft and foveolar cell hyperplasia. Acute gastric damage elicits a type-2 inflammatory response that includes production of type-2 cytokines and infiltration by eosinophils and alternatively activated macrophages. Stomachs of mice that lack interleukin 33 (IL33) or interleukin 13 (IL13) did not undergo epithelial reprogramming after drug-induced injury. We investigated the role of group 2 innate lymphoid cells (ILC2s) in gastric epithelial repair. METHODS: Acute gastric injury was induced in C57BL/6J mice (wild-type and RAG1 knockout) by administration of L635. We isolated ILC2s by flow cytometry from stomachs of mice that were and were not given L635 and performed single-cell RNA sequencing. ILC2s were depleted from wild-type and RAG1-knockout mice by administration of anti-CD90.2. We assessed gastric cell lineages, markers of metaplasia, inflammation, and proliferation. Gastric tissue microarrays from patients with gastric adenocarcinoma were analyzed by immunostaining. RESULTS: There was a significant increase in the number of GATA3-positive ILC2s in stomach tissues from wild-type mice after L635-induced damage, but not in stomach tissues from IL33-knockout mice. We characterized a marker signature of gastric mucosal ILC2s and identified a transcription profile of metaplasia-associated ILC2s, which included changes in expression of Il5, Il13, Csf2, Pd1, and Ramp3; these changes were validated by quantitative polymerase chain reaction and immunocytochemistry. Depletion of ILC2s from mice blocked development of metaplasia after L635-induced injury in wild-type and RAG1-knockout mice and prevented foveolar and tuft cell hyperplasia and infiltration or activation of macrophages after injury. Numbers of ILC2s were increased in stomach tissues from patients with SPEM compared with patients with normal corpus mucosa. CONCLUSIONS: In analyses of stomach tissues from mice with gastric tissue damage and patients with SPEM, we found evidence of type 2 inflammation and increased numbers of ILC2s. Our results suggest that ILC2s coordinate the metaplastic response to severe gastric injury.


Assuntos
Mucosa Gástrica/patologia , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Animais , Modelos Animais de Doenças , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Humanos , Interleucina-33/genética , Metaplasia/induzido quimicamente , Metaplasia/genética , Metaplasia/imunologia , Camundongos , Camundongos Knockout
10.
J Immunol ; 205(4): 1157-1166, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690653

RESUMO

The cyclooxygenase (COX) metabolic pathway regulates immune responses and inflammation. The effect of the COX pathway on innate pulmonary inflammation induced by protease-containing fungal allergens, such as Alternaria alternata, is not fully defined. In this study, we tested the hypothesis that COX inhibition augments Alternaria-induced pulmonary group 2 innate lymphoid cell (ILC2) responses and IL-33 release. Mice were treated with the COX inhibitors indomethacin, flurbiprofen, or vehicle and challenged intranasally with Alternaria extract for four consecutive days to induce innate lung inflammation. We found that indomethacin and flurbiprofen significantly increased the numbers of ILC2 and IL-5 and IL-13 expression by ILC2 in the lung. Indomethacin also increased ILC2 proliferation, the percentages of eosinophils, and mucus production in the lung. Both indomethacin and flurbiprofen augmented the release of IL-33 in bronchoalveolar lavage fluid after Alternaria challenge, suggesting that more IL-33 was available for ILC2 activation and that a COX product(s) inhibited IL-33 release. This is supported by the in vitro finding that the COX product PGE2 and the PGI2 analogs cicaprost decreased Alternaria extract-induced IL-33 release by human bronchial epithelial cells. Although contrasting effects of PGD2, PGE2, and PGI2 on ILC2 responses have been previously reported, the overall effect of the COX pathway on ILC2 function is inhibitory in Alternaria-induced innate airway inflammation.


Assuntos
Alternaria/imunologia , Inibidores de Ciclo-Oxigenase/farmacologia , Imunidade Inata/efeitos dos fármacos , Interleucina-33/imunologia , Linfócitos/efeitos dos fármacos , Alérgenos/imunologia , Alternariose/imunologia , Alternariose/metabolismo , Alternariose/microbiologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Proliferação de Células/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/microbiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Feminino , Flurbiprofeno/imunologia , Humanos , Imunidade Inata/imunologia , Indometacina/farmacologia , Interleucina-13/imunologia , Interleucina-5/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Linfócitos/imunologia , Linfócitos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Pneumonia/metabolismo , Pneumonia/microbiologia
11.
Methods Mol Biol ; 2121: 7-22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32147782

RESUMO

Understanding the origins and developmental trajectory of innate lymphoid cell (ILC) progenitors has been of substantial interest to the fields of ILC biology and immunology. While mature ILC are rare lymphocytes, ILC progenitors represent an even smaller fraction of cells, providing additional challenges in studying them. Moreover, though the approaches to studying these cells are conceptually straightforward, the technical nuances that underlie them can substantially affect the quality of the data. Herein, we provide a detailed protocol for assessing the frequency of ILC progenitors in the bone marrow, their phenotype, and their potential to develop into mature ILC. These methods make up the foundation of in vivo investigations into ILC development, and we hope these thorough protocols and associated notes facilitate additional, high-quality inquiries into this fascinating field.


Assuntos
Transferência Adotiva/métodos , Células da Medula Óssea , Células Matadoras Naturais/citologia , Fígado/citologia , Linfócitos/citologia , Células Progenitoras Linfoides/citologia , Linfopoese/imunologia , Animais , Medula Óssea , Células da Medula Óssea/citologia , Linhagem da Célula , Feminino , Citometria de Fluxo , Células Matadoras Naturais/imunologia , Fígado/imunologia , Linfócitos/imunologia , Células Progenitoras Linfoides/imunologia , Células Progenitoras Linfoides/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
12.
J Immunol ; 203(6): 1457-1467, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31391233

RESUMO

IL-33 is an IL-1 family member protein that is a potent driver of inflammatory responses in both allergic and nonallergic disease. This proinflammatory effect is mediated primarily by extracellular release of IL-33 from stromal cells and binding of the C-terminal domain of IL-33 to its receptor ST2 on targets such as CD4+ Th2 cells, ILC2, and mast cells. Notably, IL-33 has a distinct N-terminal domain that mediates nuclear localization and chromatin binding. However, a defined in vivo cell-intrinsic role for IL-33 has not been established. We identified IL-33 expression in the nucleus of progenitor B (pro-B) and large precursor B cells in the bone marrow, an expression pattern unique to B cells among developing lymphocytes. The IL-33 receptor ST2 was not expressed within the developing B cell lineage at either the transcript or protein level. RNA sequencing analysis of wild-type and IL-33-deficient pro-B and large precursor B cells revealed a unique, IL-33-dependent transcriptional profile wherein IL-33 deficiency led to an increase in E2F targets, cell cycle genes, and DNA replication and a decrease in the p53 pathway. Using mixed bone marrow chimeric mice, we demonstrated that IL-33 deficiency resulted in an increased frequency of developing B cells via a cell-intrinsic mechanism starting at the pro-B cell stage paralleling IL-33 expression. Finally, IL-33 was detectable during early B cell development in humans and IL33 mRNA expression was decreased in B cell chronic lymphocytic leukemia samples compared with healthy controls. Collectively, these data establish a cell-intrinsic, ST2-independent role for IL-33 in early B cell development.


Assuntos
Linfócitos B/imunologia , Interleucina-33/imunologia , Adulto , Animais , Replicação do DNA/imunologia , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/imunologia , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Mensageiro/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Proteína Supressora de Tumor p53/imunologia
13.
Am J Respir Cell Mol Biol ; 61(4): 459-468, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30943376

RESUMO

Calprotectin is a heterodimer of the proteins S100A8 and S100A9, and it is an abundant innate immune protein associated with inflammation. In humans, calprotectin transcription and protein abundance are associated with asthma and disease severity. However, mechanistic studies in experimental asthma models have been inconclusive, identifying both protective and pathogenic effects of calprotectin. To clarify the role of calprotectin in asthma, calprotectin-deficient S100A9-/- and wild-type (WT) C57BL/6 mice were compared in a murine model of allergic airway inflammation. Mice were intranasally challenged with extracts of the clinically relevant allergen, Alternaria alternata (Alt Ext), or PBS every third day over 9 days. On Day 10, BAL fluid and lung tissue homogenates were harvested and allergic airway inflammation was assessed. Alt Ext challenge induced release of S100A8/S100A9 to the alveolar space and increased protein expression in the alveolar epithelium of WT mice. Compared with WT mice, S100A9-/- mice displayed significantly enhanced allergic airway inflammation, including production of IL-13, CCL11, CCL24, serum IgE, eosinophil recruitment, and airway resistance and elastance. In response to Alt Ext, S100A9-/- mice accumulated significantly more IL-13+IL-5+CD4+ T-helper type 2 cells. S100A9-/- mice also accumulated a significantly lower proportion of CD4+ T regulatory (Treg) cells in the lung that had significantly lower expression of CD25. Calprotectin enhanced WT Treg cell suppressive activity in vitro. Therefore, this study identifies a role for the innate immune protein, S100A9, in protection from CD4+ T-helper type 2 cell hyperinflammation in response to Alt Ext. This protection is mediated, at least in part, by CD4+ Treg cell function.


Assuntos
Alveolite Alérgica Extrínseca/imunologia , Calgranulina B/fisiologia , Complexo Antígeno L1 Leucocitário/fisiologia , Pulmão/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Imunidade Adaptativa , Alérgenos/toxicidade , Alternaria/imunologia , Alveolite Alérgica Extrínseca/etiologia , Alveolite Alérgica Extrínseca/patologia , Animais , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Líquido da Lavagem Broncoalveolar/química , Calgranulina A/biossíntese , Calgranulina A/genética , Calgranulina B/genética , Citocinas/metabolismo , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Imunoglobulina E/imunologia , Inflamação , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Eosinofilia Pulmonar/etiologia , Eosinofilia Pulmonar/imunologia , Eosinofilia Pulmonar/patologia , Organismos Livres de Patógenos Específicos
14.
Clin Chest Med ; 40(1): 29-50, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30691715

RESUMO

There are multiple proinflammatory pathways in the pathogenesis of asthma. These include both innate and adaptive inflammation, in addition to inflammatory and physiologic responses mediated by eicosanoids. An important component of the innate allergic immune response is ILC2 activated by interleukin (IL)-33, thymic stromal lymphopoietin, and IL-25 to produce IL-5 and IL-13. In terms of the adaptive T-lymphocyte immunity, CD4+ Th2 and IL-17-producing cells are critical in the inflammatory responses in asthma. Last, eicosanoids involved in asthma pathogenesis include prostaglandin D2 and the cysteinyl leukotrienes that promote smooth muscle constriction and inflammation that propagate allergic responses.


Assuntos
Imunidade Adaptativa/imunologia , Asma/imunologia , Asma/fisiopatologia , Imunidade Inata/imunologia , Humanos
16.
Curr Opin Allergy Clin Immunol ; 19(1): 38-45, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30516547

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to describe the recent advances that have been made in understanding the protective role of prostaglandin E2 (PGE2) in aspirin-exacerbated respiratory disease (AERD), known in Europe as NSAID-exacerbated respiratory disease (N-ERD). RECENT FINDINGS: Decreased PGE2 signaling through the EP2 receptor in patients with AERD leads to an increase in leukotriene synthesis and signaling. Leukotriene signaling not only directly activates group 2 innate lymphoid cells and mast cells, but it also increases production of IL-33 and thymic stromal lymphopoietin. These cytokines drive Th2 inflammation in a suspected feed-forward mechanism in patients with AERD. SUMMARY: Recent discoveries concerning the role of PGE2 in leukotriene synthesis and signaling in AERD, as well as downstream effects on group 2 innate lymphoid cells and mast cells, allow for a more comprehensive understanding of the pathogenesis of this disease. These discoveries also identify new paths of potential investigation and possible therapeutic targets for AERD.


Assuntos
Asma Induzida por Aspirina/imunologia , Dinoprostona/metabolismo , Linfócitos/imunologia , Mastócitos/imunologia , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Animais , Citocinas/metabolismo , Humanos , Imunidade Inata , Interleucina-33/metabolismo , Leucotrienos/metabolismo , Células Th2/imunologia
17.
Viruses ; 10(8)2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127286

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. With repeat infections throughout life, it can also cause substantial disease in the elderly and in adults with compromised cardiac, pulmonary and immune systems. RSV is a pleomorphic enveloped RNA virus in the Pneumoviridae family. Recently, the three-dimensional (3D) structure of purified RSV particles has been elucidated, revealing three distinct morphological categories: spherical, asymmetric, and filamentous. However, the native 3D structure of RSV particles associated with or released from infected cells has yet to be investigated. In this study, we have established an optimized system for studying RSV structure by imaging RSV-infected cells on transmission electron microscopy (TEM) grids by cryo-electron tomography (cryo-ET). Our results demonstrate that RSV is filamentous across several virus strains and cell lines by cryo-ET, cryo-immuno EM, and thin section TEM techniques. The viral filament length varies from 0.5 to 12 µm and the average filament diameter is approximately 130 nm. Taking advantage of the whole cell tomography technique, we have resolved various stages of RSV assembly. Collectively, our results can facilitate the understanding of viral morphogenesis in RSV and other pleomorphic enveloped viruses.


Assuntos
Vírus Sincicial Respiratório Humano/ultraestrutura , Vírion/ultraestrutura , Montagem de Vírus/fisiologia , Células A549 , Animais , Brônquios/virologia , Linhagem Celular , Chlorocebus aethiops , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Células HeLa , Humanos , Microtomia , Vírus Sincicial Respiratório Humano/fisiologia , Células Vero , Vírion/fisiologia
19.
J Exp Med ; 215(1): 263-281, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29222107

RESUMO

Group 2 innate lymphoid cells (ILC2s) are effector cells within the mucosa and key participants in type 2 immune responses in the context of allergic inflammation and infection. ILC2s develop in the bone marrow from common lymphoid progenitor cells, but little is known about how ILC2s egress from the bone marrow for hematogenous trafficking. In this study, we identified a critical role for IL-33, a hallmark peripheral ILC2-activating cytokine, in promoting the egress of ILC2 lineage cells from the bone marrow. Mice lacking IL-33 signaling had normal development of ILC2s but retained significantly more ILC2 progenitors in the bone marrow via augmented expression of CXCR4. Intravenous injection of IL-33 or pulmonary fungal allergen challenge mobilized ILC2 progenitors to exit the bone marrow. Finally, IL-33 enhanced ILC2 trafficking to the lungs in a parabiosis mouse model of tissue disruption and repopulation. Collectively, these data demonstrate that IL-33 plays a critical role in promoting ILC2 egress from the bone marrow.


Assuntos
Células da Medula Óssea/metabolismo , Imunidade Inata , Interleucina-33/metabolismo , Subpopulações de Linfócitos/metabolismo , Alérgenos/imunologia , Animais , Antígenos de Fungos/imunologia , Medula Óssea , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Contagem de Células , Diferenciação Celular , Proteína 1 Semelhante a Receptor de Interleucina-1/deficiência , Interleucina-33/genética , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/imunologia , Camundongos , Camundongos Knockout , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais
20.
Gut ; 67(5): 805-817, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28196875

RESUMO

OBJECTIVE: Alternatively activated macrophages (M2) are associated with the progression of spasmolytic polypeptide-expressing metaplasia (SPEM) in the stomach. However, the precise mechanism(s) and critical mediators that induce SPEM are unknown. DESIGN: To determine candidate genes important in these processes, macrophages from the stomach corpus of mice with SPEM (DMP-777-treated) or advanced SPEM (L635-treated) were isolated and RNA sequenced. Effects on metaplasia development after acute parietal cell loss induced by L635 were evaluated in interleukin (IL)-33, IL-33 receptor (ST2) and IL-13 knockout (KO) mice. RESULTS: Profiling of metaplasia-associated macrophages in the stomach identified an M2a-polarised macrophage population. Expression of IL-33 was significantly upregulated in macrophages associated with advanced SPEM. L635 induced metaplasia in the stomachs of wild-type mice, but not in the stomachs of IL-33 and ST2 KO mice. While IL-5 and IL-9 were not required for metaplasia induction, IL-13 KO mice did not develop metaplasia in response to L635. Administration of IL-13 to ST2 KO mice re-established the induction of metaplasia following acute parietal cell loss. CONCLUSIONS: Metaplasia induction and macrophage polarisation after parietal cell loss is coordinated through a cytokine signalling network of IL-33 and IL-13, linking a combined response to injury by both intrinsic mucosal mechanisms and infiltrating M2 macrophages.


Assuntos
Interleucina-13/metabolismo , Interleucina-33/metabolismo , Macrófagos/metabolismo , Metaplasia/metabolismo , Estômago/citologia , Animais , Citometria de Fluxo , Mucosa Gástrica/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-13/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Parietais Gástricas/citologia , Peptídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA