Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34372102

RESUMO

In this study, fibrous membranes from recycled-poly(ethylene terephthalate)/silk fibroin (r-PSF) were prepared by electrospinning for filtration applications. The effect of silk fibroin on morphology, fibers diameters, pores size, wettability, chemical structure, thermo-mechanical properties, filtration efficiency, filtration performance, and comfort properties such as air and water vapor permeability was investigated. The filtration efficiency (FE) and quality factor (Qf), which represents filtration performance, were calculated from penetration through the membranes using aerosol particles ranging from 120 nm to 2.46 µm. The fiber diameter influenced both FE and Qf. However, the basis weight of the membranes has an effect, especially on the FE. The prepared membranes were classified according to EN149, and the most effective was assigned to the class FFP1 and according to EN1822 to the class H13. The impact of silk fibroin on the air permeability was assessed. Furthermore, the antibacterial activity against bacteria S. aureus and E. coli and biocompatibility were evaluated. It is discussed that antibacterial activity depends not only on the type of used materials but also on fibrous membranes' surface wettability. In vitro biocompatibility of the selected samples was studied, and it was proven to be of the non-cytotoxic effect of the keratinocytes (HaCaT) after 48 h of incubation.

2.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008810

RESUMO

Zein is renewable plant protein with valuable film-forming properties that can be used as a packaging material. It is known that the addition of natural cross-linkers can enhance a film's tensile properties. In this study, we aimed to prepare antimicrobial zein-based films enriched with monolaurin, eugenol, oregano, and thyme essential oil. Films were prepared using the solvent casting technique from ethanol solution. Their physicochemical properties were investigated using structural, morphological, and thermal techniques. Polar and dispersive components were analyzed using two models to evaluate the effects on the surface free energy values. The antimicrobial activity was proven using a disk diffusion method and the suppression of bacterial growth was confirmed via a growth kinetics study with the Gompertz function. The films' morphological characteristics led to systems with uniform distribution of essential oils or eugenol droplets combined with a flat-plated structure of monolaurin. A unique combination of polyphenolic eugenol and amphiphilic monoglyceride provided highly stretchable films with enhanced barrier properties and efficiency against Gram-positive and Gram-negative bacteria, yeasts, and molds. The prepared zein-based films with tunable surface properties represent an alternative to non-renewable resources with a potential application as active packaging materials.


Assuntos
Eugenol/farmacologia , Embalagem de Alimentos , Lauratos/farmacologia , Monoglicerídeos/farmacologia , Óleos Voláteis/farmacologia , Zeína/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Fenômenos Biomecânicos/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Escherichia coli/efeitos dos fármacos , Microscopia de Força Atômica , Permeabilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Vapor , Propriedades de Superfície , Molhabilidade
3.
ACS Appl Bio Mater ; 3(11): 7666-7676, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33225238

RESUMO

Atopic dermatitis (eczema) is a widespread disorder, with researchers constantly looking for more efficacious treatments. Natural oils are reported to be an effective therapy for dry skin, and medical textiles can be used as an alternative or supporting therapy. In this study, fibrous membranes from poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) with low and high molecular weights were manufactured to obtain nano- and micrometer fibers via electrospinning for the designed patches used as oil carriers for atopic skin treatment. The biocompatibility of PVB patches was analyzed using proliferation tests and scanning electron microscopy (SEM), which combined with a focused ion beam (FIB) allowed for the 3D visualization of patches. The oil spreading tests with evening primrose, black cumin seed, and borage were verified with cryo-SEM, which showed the advantage nanofibers have over microfibers as carriers for low-viscosity oils. The skin tests expressed the usability and the enhanced oil delivery performance for electrospun patches. We demonstrate that through the material nano- and microstructure, commercially available polymers such as PVB have great potential to be deployed as a biomaterial in medical applications, such as topical treatments for chronic skin conditions.

4.
Polymers (Basel) ; 11(9)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450733

RESUMO

Post-process thermal treatment of electrospun fibers obtained from poly(ethylene oxide) (PEO) water and methanol solutions was examined. PEO fibers from methanol solution showed larger diameters as observed by scanning electron microscopy. Fibers both from water and methanol solutions exhibited a significant dimensional stability and surface cracking during the specific exposure time after thermal treatments at 40, 50, and 60 °C. Changes in crystallinity after the thermal treatment were studied by wide-angle X-ray diffraction. The kinetics of secondary crystallization were positively influenced by the as-processed level of the amorphous phase and temperature of thermal treatment. Samples treated at 60 °C were degraded by thermooxidation within the time.

5.
J Biomed Mater Res B Appl Biomater ; 107(7): 2378-2387, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30690889

RESUMO

Poly(lactic acid)-block-poly(oxirane)s (PLA-b-POE) of various compositions were prepared using a one-pot approach and then extended in a reaction with l-lysine diethyl ester diisocyanate, thereby forming polyester-ether-urethanes (PEU) with prolonged chains and units with increased degradability. The PEUs are processed by electrospinning to prepare degradable nanofibrous sheet materials with and without encapsulating the antibiotic Vancomycin (VAC). PLA block isomerism and POE blocks oligomeric content (1000 g/mol) affect the thermal properties, processability, nanofibrous sheet morphology, abiotic degradation, cytocompatibility, and encapsulated antibiotic release rate of prepared PEUs. Therefore, our findings provide an effective approach to tuning the functional properties of these advanced biocompatible materials. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2378-2387, 2019.


Assuntos
Antibacterianos , Sistemas de Liberação de Medicamentos , Teste de Materiais , Nanofibras/química , Vancomicina , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Camundongos , Células NIH 3T3 , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Poliuretanos/química , Poliuretanos/farmacologia , Vancomicina/química , Vancomicina/farmacologia
6.
Sci Total Environ ; 643: 1644-1651, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30104017

RESUMO

The study investigates the content of microplastic particles in freshwater and drinking water. Specifically, three water treatment plants (WTPs) supplied by different kinds of water bodies were selected and their raw and treated water was analysed for microplastics (MPs). Microplastics were found in all water samples and their average abundance ranged from 1473 ±â€¯34 to 3605 ±â€¯497 particles L-1 in raw water and from 338 ±â€¯76 to 628 ±â€¯28 particles L-1 in treated water, depending on the WTP. This study is one of very few that determine microplastics down to the size of 1 µm, while MPs smaller than 10 µm were the most plentiful in both raw and treated water samples, accounting for up to 95%. Further, MPs were divided into three categories according to their shape. Fragments clearly prevailed at two of the WTPs and fibres together with fragments predominated at one case. Despite 12 different materials forming the microplastics being identified, the majority of the MPs (>70%) comprised of PET (polyethylene terephthalate), PP (polypropylene) and PE (polyethylene). This study contributes to fill the knowledge gap in the field of emerging microplastic pollution of drinking water and water sources, which is of concern due to the potential exposure of microplastics to humans.


Assuntos
Água Potável/química , Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análise , Água Doce
7.
J Colloid Interface Sci ; 396: 146-51, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23433972

RESUMO

Sedimentation of particles in magnetorheological suspensions represents a crucial problem that concerns their efficient long-term application in practice. Prepared carbonyl iron (CI) microparticles coated with a low density substance, cholesteryl chloroformate, via a two-step reaction and immersed in silicone oil, exhibit three positive aspects: (1) the CI particle modification increased the compatibility between the particles and the silicone oil resulting in improved long-term stability (reduction in sedimentation); (2) the coating provided the particles with enhanced thermal stability in the oxygen atmosphere; and (3) rheological measurements proved a promising magnetorheological performance at different particle weight fractions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA