Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 461(3): 531-7, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24911653

RESUMO

IKKß {IκB [inhibitor of NF-κB (nuclear factor κB)] kinase ß} is required to activate the transcription factor NF-κB, but how IKKß itself is activated in vivo is still unclear. It was found to require phosphorylation by one or more 'upstream' protein kinases in some reports, but by autophosphorylation in others. In the present study, we resolve this contro-versy by demonstrating that the activation of IKKß induced by IL-1 (interleukin-1) or TNF (tumour necrosis factor) in embryonic fibroblasts, or by ligands that activate Toll-like receptors in macrophages, requires two distinct phosphorylation events: first, the TAK1 [TGFß (transforming growth factor ß)-activated kinase-1]-catalysed phosphorylation of Ser¹77 and, secondly, the IKKß-catalysed autophosphorylation of Ser¹8¹. The phosphorylation of Ser¹77 by TAK1 is a priming event required for the subsequent autophosphorylation of Ser¹8¹, which enables IKKß to phosphorylate exogenous substrates. We also provide genetic evidence which indicates that the IL-1-stimulated, LUBAC (linear ubiquitin chain assembly complex)-catalysed formation of linear ubiquitin chains and their interaction with the NEMO (NF-κB essential modulator) component of the canonical IKK complex permits the TAK1-catalysed priming phosphorylation of IKKß at Ser¹77 and IKKα at Ser¹76. These findings may be of general significance for the activation of other protein kinases.


Assuntos
Quinase I-kappa B/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Substituição de Aminoácidos , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Ativação Enzimática/efeitos dos fármacos , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/química , Quinase I-kappa B/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Ubiquitinação
2.
Cell Cycle ; 12(17): 2876-87, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23966160

RESUMO

Many pharmaceuticals used to treat cancer target the cell cycle or mitotic spindle dynamics, such as the anti-tumor drug, paclitaxel, which stabilizes microtubules. Here we show that, in cells arrested in mitosis with the spindle toxins, nocodazole, or paclitaxel, the endogenous protein phosphatase 4 (Ppp4) complex Ppp4c-R2-R3A is phosphorylated on its regulatory (R) subunits, and its activity is inhibited. The phosphorylations are blocked by roscovitine, indicating that they may be mediated by Cdk1-cyclin B. Endogenous Ppp4c is enriched at the centrosomes in the absence and presence of paclitaxel, nocodazole, or roscovitine, and the activity of endogenous Ppp4c-R2-R3A is inhibited from G 1/S to the G 2/M phase of the cell cycle. Endogenous γ-tubulin and its associated protein, γ-tubulin complex protein 2, both of which are essential for nucleation of microtubules at centrosomes, interact with the Ppp4 complex. Recombinant γ-tubulin can be phosphorylated by Cdk1-cyclin B or Brsk1 and dephosphorylated by Ppp4c-R2-R3A in vitro. The data indicate that Ppp4c-R2-R3A regulates microtubule organization at centrosomes during cell division in response to stress signals such as spindle toxins, paclitaxel, and nocodazole, and that inhibition of the Ppp4 complex may be advantageous for treatment of some cancers.


Assuntos
Proteína Quinase CDC2/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Ciclo Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Nocodazol/farmacologia , Fosfoproteínas Fosfatases/química , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Subunidades Proteicas/metabolismo , Fuso Acromático/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
3.
Science ; 336(6083): 918-22, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22517326

RESUMO

Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Salicilatos/metabolismo , Salicilatos/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Substituição de Aminoácidos , Animais , Aspirina/farmacologia , Sítios de Ligação , Compostos de Bifenilo , Metabolismo dos Carboidratos/efeitos dos fármacos , Linhagem Celular , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Células HEK293 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Mutação , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação , Pironas/farmacologia , Ratos , Salicilatos/sangue , Tiofenos/farmacologia
4.
FEBS Lett ; 580(16): 4010-4, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16806191

RESUMO

The protein kinase COT/Tpl2 is activated by interleukin-1 (IL-1), TNFalpha and lipopolysaccharide, and its activation by these agonists involves the IkappaB kinase beta (IKKbeta) catalysed phosphorylation of the p105 regulatory subunit. Here, we show that COT activation also requires catalytic subunit phosphorylation, since IL-1beta induced a 5-10-fold activation of a COT mutant unable to bind p105. Activation was paralleled by the phosphorylation of Thr290 and Ser62 and unaffected by the IKKbeta inhibitor PS1145 at concentrations which prevented the degradation of IkappaBalpha. Mutagenesis experiments indicated that COT activation is initiated by Thr290 phosphorylation catalysed by an IL-1-stimulated protein kinase distinct from IKKbeta, while Ser62 phosphorylation is an autophosphorylation event required for maximal activation.


Assuntos
Domínio Catalítico/efeitos dos fármacos , Interleucina-1/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Ativação Enzimática/efeitos dos fármacos , Humanos , MAP Quinase Quinase Quinases/química , Espectrometria de Massas , Dados de Sequência Molecular , Mutação/genética , Proteínas Proto-Oncogênicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA