Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891541

RESUMO

Hydrogel-based flexible electronic devices have great potential in human motion monitoring, electronic skins, and human-computer interaction applications; hence, the efficient preparation of highly sensitive hydrogel-based flexible sensors is important. In the present work, the ultrafast polymerization of a hydrogel (1-3 min) was achieved by constructing a tannic acid (TA)-Fe3+ dynamic redox system, which endowed the hydrogel with good adhesion performance (the adhesion strength in wood was 17.646 kPa). In addition, the uniform dispersal ensured by incorporating polydopamine-decorated polypyrrole (PPy@PDA) into the hydrogel matrix significantly improved the hydrogel's stretching ability (575.082%). The as-prepared PAM/CS/PPy@PDA/TA hydrogel-based flexible sensor had a high-fidelity low detection limit (strain = 1%), high sensitivity at small strains (GF = 5.311 at strain = 0-8%), and fast response time (0.33 s) and recovery time (0.25 s), and it was reliably applied to accurate human motion monitoring and handwriting recognition. The PAM/CS/PPy@PDA/TA hydrogel opens new horizons for wearable electronic devices, electronic skins, and human-computer interaction applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA