Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 12(1): 46-64, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36760376

RESUMO

Background: Hepatocellular carcinoma (HCC) is a common malignancy. Ferroptosis and cuproptosis promote HCC spread and proliferation. While fewer studies have combined ferroptosis and cuproptosis to construct prognostic signature of HCC. This work attempts to establish a novel scoring system for predicting HCC prognosis, immunotherapy, and medication sensitivity based on ferroptosis-related genes (FRGs) and cuproptosis-related genes (CRGs). Methods: FerrDb and previous literature were used to identify FRGs. CRGs came from original research. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases included the HCC transcriptional profile and clinical information [survival time, survival status, age, gender, Tumor Node Metastasis (TNM) stage, etc.]. Correlation, Cox, and least absolute shrinkage and selection operator (LASSO) regression analyses were used to narrow down prognostic genes and develop an HCC risk model. Using "caret", R separated TCGA-HCC samples into a training risk set and an internal test risk set. As external validation, we used ICGC samples. We employed Kaplan-Meier analysis and receiver operating characteristic (ROC) curve to evaluate the model's clinical efficacy. CIBERSORT and TIMER measured immunocytic infiltration in high- and low-risk populations. Results: TXNRD1 [hazard ratio (HR) =1.477, P<0.001], FTL (HR =1.373, P=0.001), GPX4 (HR =1.650, P=0.004), PRDX1 (HR =1.576, P=0.002), VDAC2 (HR =1.728, P=0.008), OTUB1 (HR =1.826, P=0.002), NRAS (HR =1.596, P=0.005), SLC38A1 (HR =1.290, P=0.002), and SLC1A5 (HR =1.306, P<0.001) were distinguished to build predictive model. In both the model cohort (P<0.001) and the validation cohort (P<0.05), low-risk patients had superior overall survival (OS). The areas under the curve (AUCs) of the ROC curves in the training cohort (1-, 3-, and 5-year AUCs: 0.751, 0.727, and 0.743), internal validation cohort (1-, 3-, and 5-year AUCs: 0.826, 0.624, and 0.589), and ICGC cohort (1-, 3-, and 5-year AUCs: 0.699, 0.702, and 0.568) were calculated. Infiltration of immune cells and immunological checkpoints were also connected with our signature. Treatments with BI.2536, Epothilone.B, Gemcitabine, Mitomycin.C, Obatoclax. Mesylate, and Sunitinib may profit high-risk patients. Conclusions: We analyzed FRGs and CRGs profiles in HCC and established a unique risk model for treatment and prognosis. Our data highlight FRGs and CRGs in clinical practice and suggest ferroptosis and cuproptosis may be therapeutic targets for HCC patients. To validate the model's clinical efficacy, more HCC cases and prospective clinical assessments are needed.

2.
Transl Cancer Res ; 12(12): 3327-3345, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38192999

RESUMO

Background: Ferroptosis and cuproptosis play a crucial role in the progression and dissemination of hepatocellular carcinoma (HCC). The primary objective of this study was to develop a unique scoring system for predicting the prognosis and immunological landscape of HCC based on ferroptosis-related genes (FRGs) and cuproptosis-related genes (CRGs). Methods: As the training cohort, we assembled a novel HCC cohort by merging gene expression data and clinical data from The Cancer Genome Atlas (TCGA) database, and Gene Expression Omnibus (GEO) database. The validation cohort consisted of 230 HCC cases taken from the International Cancer Genome Consortium (ICGC) database. Multiple genomic characteristics, such as tumor mutation burden (TMB), and copy number variations were analyzed concurrently. On the basis of the expression of CRGs and FRGs, patients were classified into cuproptosis and ferroptosis subtypes. Then, we constructed a risk model using least absolute shrinkage and selection operator (LASSO) analysis and Cox regression analysis based on ferroptosis and cuproptosis-related differentially expressed genes (DEGs). Patients were separated into two groups according to median risk score. We compared the immunophenotype, tumor microenvironment (TME), cancer stem cell index, and treatment sensitivity of two groups. Results: Three subtypes of ferroptosis and two subtypes of cuproptosis were identified among the patients. A greater likelihood of survival (P<0.05) was expected for patients in FRGcluster B and CRGcluster B. After that, a confirmed risk signature for ferroptosis and cuproptosis was developed and tested. Patients in the low-risk group had significantly higher survival rates than those in the high-risk group, according to our study (P<0.001). There was also a strong correlation between the signature and other variables including immunophenoscore, TMB, cancer stem cell index, immunological checkpoint genes, and sensitivity to chemotherapeutics. Conclusions: Through this comprehensive research, we identified a unique risk signature associated with HCC patients' treatment status and prognosis. Our findings highlight FRGs' and CRGs' significance in clinical practice and imply ferroptosis and cuproptosis may be therapeutic targets for HCC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA