Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927713

RESUMO

In films of conducting polymers, the electrochemical reaction(s) drive the simultaneous variation of different material properties (reaction multifunctionality). Here, we present a parallel study of actuation-sensing-energy storage triple functionality of polypyrrole (PPy) blends with dodecylbenzenesulfonate (DBS-), PPy/DBS, without and with inclusion of polyethyleneoxide, PPy-PEO/DBS. The characterization of the response of both materials in aqueous solutions of four different salts indicated that all of the actuating, sensing and charge storage responses were, independent of the electrolyte, present for both materials, but stronger for the PPy-PEO/DBS films: 1.4× higher strains, 1.3× higher specific charge densities, 2.5× higher specific capacitances and increased ion-sensitivity towards the studied counterions. For both materials, the reaction energy, the material potential and the strain variations adapt to and sense the electrical and chemical (exchanged cation) conditions. The driving and the response of actuation, sensing and charge can be controlled/read, simultaneously, via just two connecting wires. Only the cooperative actuation of chemical macromolecular motors from functional cells has such chemical multifunctionality.

2.
Polymers (Basel) ; 12(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935858

RESUMO

Polypyrrole (PPy) based electroactive materials are important building blocks for the development of flexible electronics, bio-sensors and actuator devices. As the properties and behavior of PPy depends strongly on the operating environment-electrolyte, solvent, etc., it is desirable to plant immobile ionic species into PPy films to ensure stable response. A premade ionic polymer is not optimal in many cases, as it enforces its own structure on the conducting polymer, therefore, polymerization during fabrication is preferred. Pyrrole (Py) was electropolymerized at low temperature together with a polymerizable ionic liquid (PIL) monomer in a one-step polymerization, to form a stable film on the working electrode. The structure and morphology of the PPyPIL films were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy and solid-state NMR (ssNMR) spectroscopy. The spectroscopy results confirmed the successful polymerization of Py to PPy and PIL monomer to PIL. The presence of (TFSI-) anions that balance the charge in PPyPIL was confirmed by EDX analysis. The electrical properties of PPyPIL in lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) aqueous and propylene carbonate solutions were examined with cyclic voltammetry (CV), chronoamperometry, and chronopotentiometry. The blend of PPyPIL had mixed electronic/ionic conductive properties that were strongly influenced by the solvent. In aqueous electrolyte, the electrical conductivity was 30 times lower and the diffusion coefficient 1.5 times higher than in the organic electrolyte. Importantly, the capacity, current density, and charge density were found to stay consistent, independent of the choice of solvent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA