Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 2(20)2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29046484

RESUMO

Cellular therapies based on permanent genetic modification of conventional T cells have emerged as a promising strategy for cancer. However, it remains unknown if modification of T cell subsets, such as Tregs, could be useful in other settings, such as allograft transplantation. Here, we use a modular system based on a chimeric antigen receptor (CAR) that binds covalently modified mAbs to control Treg activation in vivo. Transient expression of this mAb-directed CAR (mAbCAR) in Tregs permitted Treg targeting to specific tissue sites and mitigated allograft responses, such as graft-versus-host disease. mAbCAR Tregs targeted to MHC class I proteins on allografts prolonged islet allograft survival and also prolonged the survival of secondary skin grafts specifically matched to the original islet allograft. Thus, transient genetic modification to produce mAbCAR T cells led to durable immune modulation, suggesting therapeutic targeting strategies for controlling alloreactivity in settings such as organ or tissue transplantation.


Assuntos
Tolerância Imunológica/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Animais , Transplante de Medula Óssea , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Técnicas de Cultura de Células , Modelos Animais de Doenças , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe I , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Órgãos , Receptores de Antígenos Quiméricos/genética , Fator de Transcrição STAT5 , Linfócitos T Reguladores/imunologia , Transplante de Tecidos , Tolerância ao Transplante/imunologia , Transplante Homólogo
2.
Diabetes ; 65(8): 2331-41, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27217483

RESUMO

ß-Cell proliferation and expansion during pregnancy are crucial for maintaining euglycemia in response to increased metabolic demands placed on the mother. Prolactin and placental lactogen signal through the prolactin receptor (PRLR) and contribute to adaptive ß-cell responses in pregnancy; however, the in vivo requirement for PRLR signaling specifically in maternal ß-cell adaptations remains unknown. We generated a floxed allele of Prlr, allowing conditional loss of PRLR in ß-cells. In this study, we show that loss of PRLR signaling in ß-cells results in gestational diabetes mellitus (GDM), reduced ß-cell proliferation, and failure to expand ß-cell mass during pregnancy. Targeted PRLR loss in maternal ß-cells in vivo impaired expression of the transcription factor Foxm1, both G1/S and G2/M cyclins, tryptophan hydroxylase 1 (Tph1), and islet serotonin production, for which synthesis requires Tph1. This conditional system also revealed that PRLR signaling is required for the transient gestational expression of the transcription factor MafB within a subset of ß-cells during pregnancy. MafB deletion in maternal ß-cells also produced GDM, with inadequate ß-cell expansion accompanied by failure to induce PRLR-dependent target genes regulating ß-cell proliferation. These results unveil molecular roles for PRLR signaling in orchestrating the physiologic expansion of maternal ß-cells during pregnancy.


Assuntos
Diabetes Gestacional/metabolismo , Células Secretoras de Insulina/metabolismo , Fator de Transcrição MafB/metabolismo , Receptores da Prolactina/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Ciclina A2/genética , Ciclina B1/genética , Ciclina B2/genética , Ciclina D1/genética , Ciclina D2/genética , Diabetes Gestacional/fisiopatologia , Feminino , Proteína Forkhead Box M1/genética , Insulina/metabolismo , Fator de Transcrição MafB/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Receptores da Prolactina/genética , Serotonina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
3.
PLoS Genet ; 12(5): e1006033, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27195491

RESUMO

Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic ß-cell dysfunction. Reduced mitochondrial function is thought to be central to ß-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in ß-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D ß-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D ß-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their ß-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of ß-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D ß-cells where we had little knowledge of which changes cause ß-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to ß-cell mitochondrial dysfunction in T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Síndrome de Down/genética , Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Trifosfato de Adenosina/metabolismo , Aneuploidia , Animais , Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 21/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/genética
4.
Cell Transplant ; 24(1): 37-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24069942

RESUMO

The success of pancreatic islet transplantation is limited by delayed engraftment and suboptimal function in the longer term. Endothelial progenitor cells (EPCs) represent a potential cellular therapy that may improve the engraftment of transplanted pancreatic islets. In addition, EPCs may directly affect the function of pancreatic ß-cells. The objective of this study was to examine the ability of EPCs to enhance pancreatic islet transplantation in a murine syngeneic marginal mass transplant model and to examine the mechanisms through which this occurs. We found that cotransplanted EPCs improved the cure rate and initial glycemic control of transplanted islets. Gene expression data indicate that EPCs, or their soluble products, modulate the expression of the ß-cell surface molecule connexin 36 and affect glucose-stimulated insulin release in vitro. In conclusion, EPCs are a promising candidate for improving outcomes in islet transplantation, and their mechanisms of action warrant further study.


Assuntos
Conexinas/biossíntese , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Células Endoteliais/patologia , Células Endoteliais/transplante , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Células-Tronco/patologia , Edulcorantes/farmacologia , Transplante Isogênico , Proteína delta-2 de Junções Comunicantes
5.
Oxid Med Cell Longev ; 2014: 520316, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009690

RESUMO

Mitochondria are the primary site of cellular energy generation and reactive oxygen species (ROS) accumulation. Elevated ROS levels are detrimental to normal cell function and have been linked to the pathogenesis of neurodegenerative disorders such as Down's syndrome (DS) and Alzheimer's disease (AD). RCAN1 is abundantly expressed in the brain and overexpressed in brain of DS and AD patients. Data from nonmammalian species indicates that increased RCAN1 expression results in altered mitochondrial function and that RCAN1 may itself regulate neuronal ROS production. In this study, we have utilized mice overexpressing RCAN1 (RCAN1(ox)) and demonstrate an increased susceptibility of neurons from these mice to oxidative stress. Mitochondria from these mice are more numerous and smaller, indicative of mitochondrial dysfunction, and mitochondrial membrane potential is altered under conditions of oxidative stress. We also generated a PC12 cell line overexpressing RCAN1 (PC12(RCAN1)). Similar to RCAN1(ox) neurons, PC12(RCAN1) cells have an increased susceptibility to oxidative stress and produce more mitochondrial ROS. This study demonstrates that increasing RCAN1 expression alters mitochondrial function and increases the susceptibility of neurons to oxidative stress in mammalian cells. These findings further contribute to our understanding of RCAN1 and its potential role in the pathogenesis of neurodegenerative disorders such as AD and DS.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Estresse Oxidativo , Animais , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA , Feminino , Peróxido de Hidrogênio/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA