Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Adv Drug Deliv Rev ; 197: 114829, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121275

RESUMO

The engagement with the immune system is one of the main cornerstones in the development of nanotechnologies for therapy and diagnostics. Recent advances have made possible the tuning of features like size, shape and biomolecular modifications that influence such interactions, however, the capabilities for immune modulation of nanoparticles are still not well defined and exploited. This review focuses on recent advances made in preclinical research for the application of nanoparticles to modulate immune responses, and the main features making them relevant for such applications. We review and discuss newest evidence in the field, which include in vivo experiments with an extensive physicochemical characterization as well as detailed study of the induced immune response. We emphasize the need of incorporating knowledge about immune response development and regulation in the design and application of nanoparticles, including the effect by parameters such as the administration route and the differential interactions with immune subsets.


Assuntos
Imunoterapia , Nanopartículas , Humanos , Nanopartículas/química , Nanotecnologia , Sistema Imunitário , Tamanho da Partícula
2.
J Nanobiotechnology ; 20(1): 538, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36544135

RESUMO

Nanoparticles have now long demonstrated capabilities that make them attractive to use in biology and medicine. Some of them, such as lipid nanoparticles (SARS-CoV-2 vaccines) or metallic nanoparticles (contrast agents) are already approved for their use in the clinic. However, considering the constantly growing body of different formulations and the huge research around nanomaterials the number of candidates reaching clinical trials or being commercialized is minimal. The reasons behind being related to the "synthetic" and "foreign" character of their surface. Typically, nanomaterials aiming to develop a function or deliver a cargo locally, fail by showing strong off-target accumulation and generation of adverse responses, which is connected to their strong recognition by immune phagocytes primarily. Therefore, rendering in negligible numbers of nanoparticles developing their intended function. While a wide range of coatings has been applied to avoid certain interactions with the surrounding milieu, the issues remained. Taking advantage of the natural cell membranes, in an approach that resembles a cell transfer, the use of cell-derived surfaces has risen as an alternative to artificial coatings or encapsulation methods. Biomimetic technologies are based on the use of isolated natural components to provide autologous properties to the nanoparticle or cargo being encapsulated, thus, improving their therapeutic behavior. The main goal is to replicate the (bio)-physical properties and functionalities of the source cell and tissue, not only providing a stealthy character to the core but also taking advantage of homotypic properties, that could prove relevant for targeted strategies. Such biomimetic formulations have the potential to overcome the main issues of approaches to provide specific features and identities synthetically. In this review, we provide insight into the challenges of nano-biointerfaces for drug delivery; and the main applications of biomimetic materials derived from specific cell types, focusing on the unique strengths of the fabrication of novel nanotherapeutics in cancer therapy.


Assuntos
Materiais Biomiméticos , COVID-19 , Nanopartículas , Neoplasias , Humanos , Biomimética , Vacinas contra COVID-19 , COVID-19/metabolismo , SARS-CoV-2 , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Membrana Celular/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
3.
Adv Biosyst ; 4(3): e1900260, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32293149

RESUMO

Translating the potential of thermoplasmonics to cell-derived nanomaterials offers exciting opportunities to fabricate beyond state-of-art artificial biomimetic nanocomposites that upon illumination perform active tasks such as delivery of cargo in complex, dynamic media such as the cytosol of cells. Cell-derived nanoparticles have shown stunning potential to implement cell-specific functions, such as long blood circulation or targeting capabilities, into advanced drug delivery nanosystems. The biomimicry nanotechnology has now advanced to offer new and exciting opportunities to improve the commonly poor in vivo performance of most current nanomedicines, including evading the immune system and targeting specific tissues such as tumors, the latest remaining among the most wanted breakthroughs in nanomedicine. However, the use of cell-derived nanocomposites as stimulus-controlled drug delivery agents remains virtually unexplored. This study reports the fabrication of a plasmonic cell-derived nanocomposite by integrating near-infrared active gold nanorods in its structure. As a proof of concept, the plasmonic nanomembranes are loaded with cell non-permeant antibodies, which upon near-infrared stimulation can be released from the plasmonic nanomembranes into the cytosol of living cells, without impairing cell viability or the antibodies' function. These results set the stage for the development of photoactive cell-derived nanocarriers, which in addition to cell-specific functions promise straightforward access to spatiotemporal-controlled intracellular delivery of antibodies.


Assuntos
Materiais Biomiméticos , Micropartículas Derivadas de Células , Sistemas de Liberação de Medicamentos/métodos , Nanocompostos , Nanomedicina Teranóstica/métodos , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Preparações de Ação Retardada , Ouro/química , Células HeLa , Humanos , Nanotubos/química
4.
J Control Release ; 308: 162-171, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31310784

RESUMO

External stimuli such as light, magnetic fields or ultrasounds allow for controlled drug release from nanocarriers with spatiotemporal resolution. Such tetherless approaches may become a straightforward solution to overcome the specificity problems typically associated with nanomedicines. Most of current nanomedicines suffer of very low specificity in vivo, thus rendering efficient targeted delivery among the most wanted breakthroughs in the fields of nanotechnology and medicine. Here we present a sonosensitive, sub-micrometric layer-by-layer capsule system for ultrasound-controlled delivery of macromolecules in vivo. As a proof of concept, the serine protease recombinant tissue plasminogen activator (rtPA), a thrombolytic drug widely employed for the treatment of acute ischemic stroke and other thromboembolic pathologies, is used as encapsulated active compound. The activity of encapsulated rtPA and its ultrasound-induced delivery from the cavity of the capsules are demonstrated. We show, first, that rtPA encapsulation prevents its endogenous biological inactivation and do not interfere with the thrombolytic activity of the drug. Second, upon ultrasound application, delivery of rtPA promotes breakdown of blood clots in vitro. Finally, the ultrasound-triggered in vivo delivery of rtPA from capsules intravenously administrated in mice is demonstrated.


Assuntos
Sistemas de Liberação de Medicamentos , Ativador de Plasminogênio Tecidual/administração & dosagem , Ondas Ultrassônicas , Administração Intravenosa , Animais , Isquemia Encefálica/tratamento farmacológico , Cápsulas , Fibrinolíticos/administração & dosagem , Fibrinolíticos/farmacologia , Masculino , Camundongos , Proteínas Recombinantes , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia
5.
J Nanobiotechnology ; 16(1): 33, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29602307

RESUMO

BACKGROUND: Dynein is a cytoskeletal molecular motor protein that transports cellular cargoes along microtubules. Biomimetic synthetic peptides designed to bind dynein have been shown to acquire dynamic properties such as cell accumulation and active intra- and inter-cellular motion through cell-to-cell contacts and projections to distant cells. On the basis of these properties dynein-binding peptides could be used to functionalize nanoparticles for drug delivery applications. RESULTS: Here, we show that gold nanoparticles modified with dynein-binding delivery sequences become mobile, powered by molecular motor proteins. Modified nanoparticles showed dynamic properties, such as travelling the cytosol, crossing intracellular barriers and shuttling the nuclear membrane. Furthermore, nanoparticles were transported from one cell to another through cell-to-cell contacts and quickly spread to distant cells through cell projections. CONCLUSIONS: The capacity of these motor-bound nanoparticles to spread to many cells and increasing cellular retention, thus avoiding losses and allowing lower dosage, could make them candidate carriers for drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Dineínas/metabolismo , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Sequência de Aminoácidos , Animais , Linhagem Celular , Ouro/química , Humanos , Nanopartículas Metálicas/ultraestrutura , Microtúbulos/metabolismo , Peso Molecular , Membrana Nuclear/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
6.
Part Fibre Toxicol ; 14(1): 41, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29073907

RESUMO

BACKGROUND: The special physicochemical properties of gold nanoprisms make them very useful for biomedical applications including biosensing and cancer therapy. However, it is not clear how gold nanoprisms may affect cellular physiology including viability and other critical functions. We report a multiparametric investigation on the impact of gold-nanoprisms on mice and human, transformed and primary cells as well as tissue distribution and toxicity in vivo after parental injection. METHODS: Cellular uptake of the gold-nanoprisms (NPRs) and the most crucial parameters of cell fitness such as generation of reactive oxygen species (ROS), mitochondria membrane potential, cell morphology and apoptosis were systematically assayed in cells. Organ distribution and toxicity including inflammatory response were analysed in vivo in mice at 3 days or 4 months after parental administration. RESULTS: Internalized gold-nanoprisms have a significant impact in cell morphology, mitochondrial function and ROS production, which however do not affect the potential of cells to proliferate and form colonies. In vivo NPRs were only detected in spleen and liver at 3 days and 4 months after administration, which correlated with some changes in tissue architecture. However, the main serum biochemical markers of organ damage and inflammation (TNFα and IFNγ) remained unaltered even after 4 months. In addition, animals did not show any macroscopic sign of toxicity and remained healthy during all the study period. CONCLUSION: Our data indicate that these gold-nanoprisms are neither cytotoxic nor cytostatic in transformed and primary cells, and suggest that extensive parameters should be analysed in different cell types to draw useful conclusions on nanomaterials safety. Moreover, although there is a tendency for the NPRs to accumulate in liver and spleen, there is no observable negative impact on animal health.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Células A549 , Animais , Linhagem Celular Transformada , Forma Celular/efeitos dos fármacos , Feminino , Ouro/administração & dosagem , Ouro/farmacocinética , Células HeLa , Humanos , Mediadores da Inflamação/sangue , Injeções Intravenosas , Interferon gama/sangue , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Distribuição Tecidual , Fator de Necrose Tumoral alfa/sangue
7.
Sci Rep ; 7(1): 4752, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684848

RESUMO

Detecting biomarkers from complex sample solutions is the key objective of molecular diagnostics. Being able to do so in a simple approach that does not require laborious sample preparation, sophisticated equipment and trained staff is vital for point-of-care applications. Here, we report on the specific detection of the breast cancer biomarker sHER2 directly from serum and saliva samples by a nanorod-based homogeneous biosensing approach, which is easy to operate as it only requires mixing of the samples with the nanorod probes. By careful nanorod surface engineering and homogeneous assay design, we demonstrate that the formation of a protein corona around the nanoparticles does not limit the applicability of our detection method, but on the contrary enables us to conduct in-situ reference measurements, thus further strengthening the point-of-care applicability of our method. Making use of sandwich assays on top of the nanorods, we obtain a limit of detection of 110 pM and 470 pM in 10-fold diluted spiked saliva and serum samples, respectively. In conclusion, our results open up numerous applications in direct protein biomarker quantification, specifically in point-of-care settings where resources are limited and ease-of-use is of essence.


Assuntos
Biomarcadores Tumorais/sangue , Técnicas Biossensoriais , Nanopartículas/química , Nanotubos/química , Coroa de Proteína/análise , Receptor ErbB-2/sangue , Anticorpos/química , Biomarcadores Tumorais/genética , Desenho de Equipamento , Humanos , Imunoensaio , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Receptor ErbB-2/genética , Padrões de Referência , Saliva/química
8.
Acta Biomater ; 55: 204-213, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28373085

RESUMO

Currently, there is a large interest in the labeling of neural stem cells (NSCs) with iron oxide nanoparticles (IONPs) to allow MRI-guided detection after transplantation in regenerative medicine. For such biomedical applications, excluding nanotoxicity is key. Nanosafety is primarily evaluated in vitro where an immortalized or cancer cell line of murine origin is often applied, which is not necessarily an ideal cell model. Previous work revealed clear neurotoxic effects of PMA-coated IONPs in distinct cell types that could potentially be applied for nanosafety studies regarding neural cell labeling. Here, we aimed to assess if DMSA-coated IONPs could be regarded as a safer alternative for this purpose and how the cell model impacted our nanosafety optimization study. Hereto, we evaluated cytotoxicity, ROS production, calcium levels, mitochondrial homeostasis and cell morphology in six related neural cell types, namely neural stem cells, an immortalized cell line and a cancer cell line from human and murine origin. The cell lines mostly showed similar responses to both IONPs, which were frequently more pronounced for the PMA-IONPs. Of note, ROS and calcium levels showed opposite trends in the human and murine NSCs, indicating the importance of the species. Indeed, the human cell models were overall more sensitive than their murine counterpart. Despite the clear cell type-specific nanotoxicity profiles, our multiparametric approach revealed that the DMSA-IONPs outperformed the PMA-IONPs in terms of biocompatibility in each cell type. However, major cell type-dependent variations in the observed effects additionally warrant the use of relevant human cell models. STATEMENT OF SIGNIFICANCE: Inorganic nanoparticle (NP) optimization is chiefly performed in vitro. For the optimization of iron oxide (IO)NPs for neural stem cell labeling in the context of regenerative medicine human or rodent neural stem cells, immortalized or cancer cell lines are applied. However, the use of certain cell models can be questioned as they phenotypically differ from the target cell. The impact of the neural cell model on nanosafety remains relatively unexplored. Here we evaluated cell homeostasis upon exposure to PMA- and DMSA-coated IONPs. Of note, the DMSA-IONPs outperformed the PMA-IONPs in each cell type. However, distinct cell type-specific effects were witnessed, indicating that nanosafety should be evaluated in a human cell model that represents the target cell as closely as possible.


Assuntos
Materiais Revestidos Biocompatíveis , Nanopartículas de Magnetita/química , Teste de Materiais , Células-Tronco Neurais/metabolismo , Coloração e Rotulagem/métodos , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Camundongos , Mitocôndrias/metabolismo , Células-Tronco Neurais/citologia , Espécies Reativas de Oxigênio/metabolismo
9.
Sci Rep ; 7: 46261, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393855

RESUMO

This paper presents a significant effect of manganese ferrite nanoparticles (MnFe2O4 NPs) on the increase of the surface photoconductivity of semiconductors. Herein, the optical characterization of photo-excited carriers of silicon coated with MnFe2O4 NPs was studied by using THz time-domain spectroscopy (THz-TDs). We observed that silicon coated with MnFe2O4 NPs provided a significantly enhanced attenuation of THz radiation in comparison with bare silicon substrates under laser irradiation. The experimental results were assessed in the context of a surface band structure model of semiconductors. In addition, photoconductive antennas coated with MnFe2O4 NPs significantly improved the efficiency of THz radiation generation and signal to noise ratio of the THz signal. This work demonstrates that coating with MnFe2O4 NPs could improve the overall performance of THz systems, and MnFe2O4 NPs could be further used for the implementation of novel optical devices.

10.
ACS Nano ; 11(3): 2397-2402, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28267316

RESUMO

In this Perspective, we describe current challenges and recent advances in efficient delivery and targeting of nanoparticles in vivo. We discuss cancer therapy, nanoparticle-biomolecule interactions, nanoparticle trafficking in cells, and triggers and responses to nanoparticle-cell interactions. No matter which functionalization strategy to target cancer is chosen, passive or active targeting, more than 99% of the nanoparticles administered in vivo end up in the mononuclear phagocytic system, mainly sequestered by macrophages. Comprehensive studies, such as the one reported by MacParland et al. in this issue of ACS Nano, will help to close the gap between nanotechnology-based drug-delivery solutions and advanced medicinal products.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/química , Humanos , Nanopartículas/administração & dosagem , Nanotecnologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia
11.
Nanotoxicology ; 11(2): 289-303, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248594

RESUMO

Water ecosystems represent main targets of unintentional contamination of nanomaterials, due to industrial waste or other anthropogenic activities. Nanoparticle insult to living organisms may occur in a sequential way, first by chemical interactions of the material with the target membrane, then by progressive internalisation and interaction with cellular structures and organelles. These events trigger a signal transduction, through which cells modulate molecular pathway in order to respond and survive to the external elicitation. Therefore, the analysis of the global changes of the molecular machinery, possibly induced in an organism upon exposure to a given nanomaterial, may provide unique clues for proper and exhaustive risk assessment. Here, we tested the impact of core/shell CdSe/ZnS QDs coated by a positively charged polymer on two aquatic species, the polyp Hydra vulgaris and the coral S. pistillata, representative of freshwater and sea habitats, respectively. By using reliable approaches based on animal behaviour and physiology together with a whole transcriptomic profiling, we determined several toxicity endpoints. Despite the difference in the efficiency of uptake, both species were severely affected by QD treatment, resulting in dramatic morphological damages and tissue bleaching. Global transcriptional changes were also detected in both organisms, but presenting different temporal dynamics, suggesting both common and divergent functional responses in the two sentinel organisms. Due to the striking conservation of structure and genomic organisation among animals throughout evolution, our expression profiling offers new clues to identify novel molecular markers and pathways for comparative transcriptomics of nanotoxicity.


Assuntos
Antozoários/efeitos dos fármacos , Compostos de Cádmio/toxicidade , Água Doce/química , Hydra/efeitos dos fármacos , Pontos Quânticos/toxicidade , Compostos de Selênio/toxicidade , Compostos de Zinco/toxicidade , Animais , Antozoários/genética , Antozoários/metabolismo , Compostos de Cádmio/química , Coloides , Endocitose/efeitos dos fármacos , Perfilação da Expressão Gênica , Hydra/genética , Hydra/metabolismo , Pontos Quânticos/química , Compostos de Selênio/química , Análise de Sequência de RNA , Transcriptoma/efeitos dos fármacos , Compostos de Zinco/química
12.
J Nanobiotechnology ; 15(1): 24, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356160

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) have an inherent migratory capacity towards tumor tissue in vivo. With the future objective to quantify the tumor homing efficacy of MSCs, as first step in this direction we investigated the use of inorganic nanoparticles (NPs), in particular ca. 4 nm-sized Au NPs, for MSC labeling. Time dependent uptake efficiencies of NPs at different exposure concentrations and times were determined via inductively coupled plasma mass spectrometry (ICP-MS). RESULTS: The labeling efficiency of the MSCs was determined in terms of the amount of exocytosed NPs versus the amount of initially endocytosed NPs, demonstrating that at high concentrations the internalized Au NPs were exocytosed over time, leading to continuous exhaustion. While exposure to NPs did not significantly impair cell viability or expression of surface markers, even at high dose levels, MSCs were significantly affected in their proliferation and migration potential. These results demonstrate that proliferation or migration assays are more suitable to evaluate whether labeling of MSCs with certain amounts of NPs exerts distress on cells. However, despite optimized conditions the labeling efficiency varied considerably in MSC lots from different donors, indicating cell specific loading capacities for NPs. Finally, we determined the detection limits of Au NP-labeled MSCs within murine tissue employing ICP-MS and demonstrate the distribution and homing of NP labeled MSCs in vivo. CONCLUSION: Although large amounts of NPs improve contrast for imaging, duration and extend of labeling needs to be adjusted carefully to avoid functional deficits in MSCs. We established an optimized labeling strategy for human MSCs with Au NPs that preserves their migratory capacity in vivo.


Assuntos
Rastreamento de Células , Ouro/química , Células-Tronco Mesenquimais/citologia , Nanopartículas Metálicas/química , Animais , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Endocitose , Exocitose , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula
13.
J Nanobiotechnology ; 15(1): 23, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28330480

RESUMO

BACKGROUND: The adhesion of cells to an oscillating cantilever sensitively influences the oscillation amplitude at a given frequency. Even early stages of cytotoxicity cause a change in the viscosity of the cell membrane and morphology, both affecting their adhesion to the cantilever. We present a generally applicable method for real-time, label free monitoring and fast-screening technique to assess early stages of cytotoxicity recorded in terms of loss of cell adhesion. RESULTS: We present data taken from gold nanoparticles of different sizes and surface coatings as well as some reference substances like ethanol, cadmium chloride, and staurosporine. Measurements were recorded with two different cell lines, HeLa and MCF7 cells. The results obtained from gold nanoparticles confirm earlier findings and attest the easiness and effectiveness of the method. CONCLUSIONS: The reported method allows to easily adapt virtually every AFM to screen and assess toxicity of compounds in terms of cell adhesion with little modifications as long as a flow cell is available. The sensitivity of the method is good enough indicating that even single cell analysis seems possible.


Assuntos
Adesão Celular , Sobrevivência Celular , Nanopartículas Metálicas/química , Microscopia de Força Atômica/métodos , Ouro/química , Células HeLa , Humanos , Células MCF-7
14.
ACS Nano ; 11(3): 2313-2381, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28290206

RESUMO

The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.


Assuntos
Sistemas de Liberação de Medicamentos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Portadores de Fármacos/química , Humanos , Nanotecnologia , Neoplasias/patologia , Tamanho da Partícula
15.
ACS Nano ; 11(2): 1281-1291, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28071891

RESUMO

Dual enzymatic reactions were introduced to fabricate programmed gemcitabine (GEM) nanovectors for targeted pancreatic cancer therapy. Dual-enzyme-sensitive GEM nanovectors were prepared by conjugation of matrix metalloproteinase-9 (MMP-9) detachable poly(ethylene glycol) (PEG), cathepsin B-cleavable GEM, and targeting ligand CycloRGD to CdSe/ZnS quantum dots (QDs). The GEM nanovectors decorated with a PEG corona could avoid nonspecific interactions and exhibit prolonged blood circulation time. After GEM nanovectors were accumulated in tumor tissue by the enhanced permeability and retention (EPR) effect, the PEG corona can be removed by overexpressed MMP-9 in tumor tissue and RGD would be exposed, which was capable of facilitating cellular internalization. Once internalized into pancreatic cancer cells, the elevated lysosomal cathepsin B could further promote the release of GEM. By employing dual enzymatic reactions, the GEM nanovectors could achieve prolonged circulation time while maintaining enhanced cellular internalization and effective drug release. The proposed mechanism of the dual enzymatic reaction-assisted GEM delivery system was fully investigated both in vitro and in vivo. Meanwhile, compared to free GEM, the deamination of GEM nanovectors into inactive 2',2'-difluorodeoxyuridine (dFdU) could be greatly suppressed, while the concentration of the activated form of GEM (gemcitabine triphosphate, dFdCTP) was significantly increased in tumor tissue, thus exhibiting superior tumor inhibition activity with minimal side effects.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Sistemas de Liberação de Medicamentos , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Nanopartículas/química , Neoplasias Pancreáticas/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Gencitabina
16.
Pharmacol Res ; 117: 261-266, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28025103

RESUMO

Many of the relevant compounds for anticancer therapy are metal-based compounds (metallodrugs), being platinum-based drugs such as cisplatin, carboplatin (Paraplatin®), and oxaliplatin (Eloxatin®) the most widely used. Despite this, their application is limited by issues such as cell-acquired platinum resistance and manifold side effects following systemic delivery. Thus, the development of new metal-based compounds is highly needed. The catalytic properties of a variety of metal-based compounds are nowadays very well known, which opens new opportunities to take advantage of them inside living cells or organisms. However, many of these compounds are hydrophobic and thus not soluble in aqueous solution, as they lack stability against water or oxygen presence. Thus, versatile platforms capable of enhancing the features of these compounds in aqueous solutions are of importance in the development of new drugs. Surface engineered nanoparticles may render metallodrugs with good colloidal stability in water and in complex media containing high salt concentration and/or proteins. Herein, polymer coated nanoparticles are proposed as a platform to link insoluble and water/oxygen sensitive drugs. The linkage of insoluble and oxygen sensitive tin clusters to nanoparticles is presented, aiming to enhance both, the solubility and the stability of these compounds in water, which may be an alternative approach in the development of metal-based drugs. The formation of the cluster-nanoparticle system was confirmed via inductively coupled plasma mass spectrometry experiments. The catalytic activity and the stability of the cluster in water were studied through the reduction of methylene blue. Results demonstrate that in fact the tin clusters could be transferred into aqueous solution and retained their catalytic activity.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Compostos Organometálicos/química , Polímeros/química , Água/química , Antineoplásicos/química , Catálise , Química Farmacêutica/métodos , Interações Hidrofóbicas e Hidrofílicas , Oxigênio/química , Solubilidade
17.
Nat Commun ; 7: 13818, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991503

RESUMO

Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies. As expected, in vitro we found a moderate increase in targeting efficiency of nanoparticles with two instead of just one antibody attached per nanoparticle. However, the in vivo data demonstrate that best effect is obtained for nanoparticles with only exactly one antibody. There is indication that this is based on a size-related effect. These results highlight the importance of precisely controlling the ligand density on the nanoparticle surface for optimizing active targeting, and that less antibodies can exhibit more effect.


Assuntos
Anticorpos/administração & dosagem , Coloides , Nanopartículas/administração & dosagem , Neoplasias Experimentais/terapia , Animais , Anticorpos/imunologia , Anticorpos Monoclonais , Linhagem Celular Tumoral , Sobrevivência Celular , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imunoterapia/métodos , Camundongos
18.
J Nanobiotechnology ; 14(1): 69, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27613519

RESUMO

BACKGROUND: While nanotechnology is advancing rapidly, nanosafety tends to lag behind since general mechanistic insights into cell-nanoparticle (NP) interactions remain rare. To tackle this issue, standardization of nanosafety assessment is imperative. In this regard, we believe that the cell type selection should not be overlooked since the applicability of cell lines could be questioned given their altered phenotype. Hence, we evaluated the impact of the cell type on in vitro nanosafety evaluations in a human and murine neuroblastoma cell line, neural progenitor cell line and in neural stem cells. Acute toxicity was evaluated for gold, silver and iron oxide (IO)NPs, and the latter were additionally subjected to a multiparametric analysis to assess sublethal effects. RESULTS: The stem cells and murine neuroblastoma cell line respectively showed most and least acute cytotoxicity. Using high content imaging, we observed cell type- and species-specific responses to the IONPs on the level of reactive oxygen species production, calcium homeostasis, mitochondrial integrity and cell morphology, indicating that cellular homeostasis is impaired in distinct ways. CONCLUSIONS: Our data reveal cell type-specific toxicity profiles and demonstrate that a single cell line or toxicity end point will not provide sufficient information on in vitro nanosafety. We propose to identify a set of standard cell lines for screening purposes and to select cell types for detailed nanosafety studies based on the intended application and/or expected exposure.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Nanopartículas de Magnetita/toxicidade , Células-Tronco Neurais/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
19.
Nanotoxicology ; 10(9): 1318-28, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27416974

RESUMO

While substantial progress has been achieved in the design of more biocompatible nanoparticles (NP), detailed data are required on the precise interactions of NPs and their environment for more reliable interpretation of toxicity results. Therefore, this study aims to investigate the interaction of two quantum dots (QDs) of the same core material CdSe/ZnS coated with two different amphiphilic polymers, with two well-established mammalian cell lines representing possible sites of QD accumulation. Results are linked to either extracellular QD concentrations (given dose) or cellular QD levels (number of internalized particles). In this study, QD internalization, effects on cellular homeostasis, and consequent inflammatory and cytoskeletal alterations caused by these QDs were explored. Fluorescence imaging techniques, including; image-based flow cytometry, confocal microscopy and high-content imaging with the InCell analyzer were used in a multiparametric methodology to evaluate cell viability, induction of oxidative stress, mitochondrial health, cell cytoskeletal functionality and changes in cellular morphology. Gene expression arrays were also carried out on 168 key genes involved in the cytoskeletal architecture and inflammatory pathway accompanied with the analysis of focal adhesions as key markers for actin-mediated signaling. Our results show distinct differences between the PMA and PTMAEMA-stat-PLMA coated QDs, which could mainly be attributed to differences in their cellular uptake levels. The toxicity profiles of both QD types changed drastically depending on whether effects were expressed in terms of given dose or internalized particles. Both QDs triggered alterations to important but different genes, most remarkably the up-regulation of tumor suppression and necrosis genes and the down regulation of angiogenesis and metastasis genes at sub-cytotoxic concentrations of these QDs.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Pontos Quânticos/toxicidade , Compostos de Cádmio/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citometria de Fluxo , Humanos , Microscopia Confocal , Estresse Oxidativo/genética , Polímeros/química , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Selênio/química , Espectrofotometria Atômica , Sulfetos/química , Propriedades de Superfície , Compostos de Zinco/química
20.
J Control Release ; 237: 50-60, 2016 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-27374629

RESUMO

Two-pore domain (K2P) potassium channels have recently attracted growing interest in the field of cancer research. These channels play an important role in cancer biology specifically for cancer progression, including proliferation, migration, and apoptosis, which makes them an attractive target for novel cancer therapies. Here, we examined the effect of Tetrandrine (Tet), a natural compound known as a channel modulator, which is associated with anticancer activities, as potential drug in this regard. Xenopus oocyte with overexpression of K2P 9.1 (TASK 3) channels has been chosen as model system for this purpose. In order to release Tet and trigger the channels we developed a polymeric magnetic delivery system: Tetrandrine-Magnetite co-loaded poly (lactic-co-glycolic) acid particles. The embedded iron oxide magnetite (Fe3O4) nanoparticles (NPs) allow to inductively heat the particles by applying a high frequency alternating magnetic field, and thus trigger the release of the co-encapsulated Tet. As a proof of concept the nanoparticulate drug delivery system was heated by raising the suspension's temperature proving the temperature dependent release behaviour. Both heating approaches were then successfully applied for measuring the TASK 3 channels current in response to the released drug. It was found that the released Tet amount is sufficient to inhibit the TASK 3 channels in a dose dependent manner. Thus, such a stimulus responsive drug delivery system holds great promise as a novel approach for the treatment of various cancer types such as for the interaction with the two-pore domain potassium channels K2P 9.1.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Benzilisoquinolinas/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Animais , Antineoplásicos Fitogênicos/farmacologia , Benzilisoquinolinas/farmacologia , Temperatura Alta , Humanos , Ácido Láctico/química , Nanopartículas de Magnetita/ultraestrutura , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA