RESUMO
Ectonucleotidases inhibitors (ENPPs, e5'NT (CD73) and h-TNAP) are potential therapeutic candidates for the treatment of cancer. Adenosine, the cancer-developing, and growth moiety is the resultant product of these enzymes. The synthesis of small molecules that can increase the acidic and ionizable structure of adenosine 5-monophosphate (AMP) has been used in traditional attempts to inhibit ENPPs, ecto-5'-nucleotidase and h-TNAP. In this article, we present a short and interesting method for developing substituted indole acetic acid sulfonate derivatives (5a-5o), which are non-nucleotide based small molecules, and investigated their inhibitory potential against recombinant h-ENPP1, h-ENPP3, h-TNAP, h-e5'NT and r-e5'NT. Their overexpression in the tumor environment leads to high adenosine level that results in tumor development as well as immune evasion. Therefore, selective, and potent inhibitors of these enzymes would be expected to decrease adenosine levels and manage tumor development and progression. Our intended outcome led to the discovery of new potent inhibitors like' 5e (IC50 against h-ENPP1 = 0.32 ± 0.01 µM, 58 folds increased with respect to suramin), 5j (IC50 against h-ENPP3 = 0.62 ± 0.003 µM, 21 folds increase with respect to suramin), 5c (IC50 against h-e5'NT = 0.37 ± 0.03 µM, 115 folds increase with respect to sulfamic acid), 5i (IC50 against r-e5'NT = 0.81 ± 0.05 µM, 95 folds increase with respect to sulfamic acid), and 5g (IC50 against h-TNAP = 0.59 ± 0.08 µM, 36 folds increase with respect to Levamisole). Molecular docking studies revealed that inhibitors of these selected target enzymes induced favorable interactions with the key amino acids of the active site, including Lys255, Lys278, Asn277, Gly533, Lys528, Tyr451, Phe257, Tyr340, Gln465, Gln434, Lys437, Glu830, Cys818, Asn499, Arg40, Phe417, Phe500, Asn503, Asn599, Tyr281, Arg397, Asp526, Phe419 and Tyr502. Enzyme kinetic studies revealed that potent compounds such as 5j and 5e blocked these ectonucleotidases competitively while compounds 5e and 5c presented an un-competitive binding mode. 5g revealed a non-competitive mode of inhibition.
RESUMO
Introduction: Heparins, naturally occurring glycosaminoglycans, are widely used for thrombosis prevention. Upon application as anticoagulants in cancer patients, heparins were found to possess additional antitumor activities. Ectonucleotidases have recently been proposed as novel targets for cancer immunotherapy. Methods and results: In the present study, we discovered that heparin and its derivatives act as potent, selective, allosteric inhibitors of the poorly investigated ectonucleotidase NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1, CD203a). Structure-activity relationships indicated that NPP1 inhibition could be separated from the compounds' antithrombotic effect. Moreover, unfractionated heparin (UFH) and different low molecular weight heparins (LMWHs) inhibited extracellular adenosine production by the NPP1-expressing glioma cell line U87 at therapeutically relevant concentrations. As a consequence, heparins inhibited the ability of U87 cell supernatants to induce CD4+ T cell differentiation into immunosuppressive Treg cells. Discussion: NPP1 inhibition likely contributes to the anti-cancer effects of heparins, and their specific optimization may lead to improved therapeutics for the immunotherapy of cancer.
Assuntos
Glioma , Heparina , Humanos , Heparina/farmacologia , Imunoterapia , Anticoagulantes , Heparina de Baixo Peso Molecular/farmacologia , Heparina de Baixo Peso Molecular/uso terapêuticoRESUMO
The aim of this research work is the synthesis of sulfamoyl-benzamides as a selective inhibitor for h-NTPDases. Sulfonamides are synthesized in aqueous medium from chlorosulfonylbenzoic acid while carboxamides are synthesized using carbodiimide coupling decorated with different biologically relevant substituents such as n-butyl, cyclopropyl, benzylamine, morpholine, and substituted anilines. In addition, sulfonamide-carboxamide derivatives were synthesized having the same substituents on either side. These compounds were screened against h-NTPDase activity, a main family of ectonucleotidases. Among the eight discovered isoforms of the h-NTPDases, four isoforms, h-NTPDase1, -2, -3, and -8, are involved in various physiological and pathological functions, for instance thrombosis, diabetes, inflammation, and cancer. The compound N-(4-bromophenyl)-4-chloro-3-(morpholine-4-carbonyl)benzenesulfonamide (3i) was found to be the most potent inhibitor of h-NTPDase1 with an IC50 value of 2.88 ± 0.13 µM. Similarly, the compounds N-(4-methoxyphenyl)-3-(morpholinosulfonyl)benzamide (3f), 5-(N-benzylsulfamoyl)-2-chloro-N-(4-methoxyphenyl)benzamide (3j) and 2-chloro-N-cyclopropyl-5-(N-cyclopropylsulfamoyl)benzamide (4d) reduced the activity of the h-NTPDases2 with IC50 in sub-micromolar concentrations. Against the h-NTPDase3, 3i was the potent compound with an IC50 concentration of 0.72 ± 0.11 µM. The h-NTPDase8 was selectively blocked by the most potent inhibitor 2-chloro-5-(N-cyclopropylsulfamoyl)benzoic acid (2d) with (IC50 = 0.28 ± 0.07 µM). Moreover, the molecular docking studies of the potent inhibitors showed significant interactions with the amino acids of the respective h-NTPDase homology model proteins.
RESUMO
Ticlopidine is an antithrombotic prodrug of the thienotetrahydropyridine family. For platelet inhibition it has to undergo oxidative ring-opening by cytochrome P450 enzymes. The resulting thiol reacts with a cysteine residue of the purinergic P2Y12 receptor on thrombocytes resulting in covalent receptor blockade. Ticlopidine in its intact, not-metabolized form was previously shown to inhibit ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, also known as cluster of differentiation (CD) 39). CD39 catalyzes the extracellular hydrolysis of ATP via ADP to AMP, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. CD39 inhibition has been proposed as a novel strategy to increase the extracellular concentration of antiproliferative ATP, while decreasing immunosuppressive and cancer-promoting adenosine levels. In the present study, we performed an extensive structure-activity relationship (SAR) analysis of ticlopidine derivatives and analogs as CD39 inhibitors followed by an in-depth characterization of selected compounds. Altogether 74 compounds were synthesized, 41 of which are new, not previously described in literature. Benzotetrahydropyridines, in which the metabolically labile thiophene is replaced by a benzene ring, were discovered as a new class of allosteric CD39 inhibitors.
Assuntos
Trifosfato de Adenosina , Ticlopidina , Adenosina , Plaquetas , Relação Estrutura-Atividade , 5'-Nucleotidase/metabolismoRESUMO
BACKGROUND: Endogenously released adenine and uracil nucleotides favour the osteogenic commitment of bone marrow-derived mesenchymal stromal cells (BM-MSCs) through the activation of ATP-sensitive P2X7 and UDP-sensitive P2Y6 receptors. Yet, these nucleotides have their osteogenic potential compromised in post-menopausal (Pm) women due to overexpression of nucleotide metabolizing enzymes, namely NTPDase3. This prompted us to investigate whether NTPDase3 gene silencing or inhibition of its enzymatic activity could rehabilitate the osteogenic potential of Pm BM-MSCs. METHODS: MSCs were harvested from the bone marrow of Pm women (69 ± 2 years old) and younger female controls (22 ± 4 years old). The cells were allowed to grow for 35 days in an osteogenic-inducing medium in either the absence or the presence of NTPDase3 inhibitors (PSB 06126 and hN3-B3s antibody); pre-treatment with a lentiviral short hairpin RNA (Lenti-shRNA) was used to silence the NTPDase3 gene expression. Immunofluorescence confocal microscopy was used to monitor protein cell densities. The osteogenic commitment of BM-MSCs was assessed by increases in the alkaline phosphatase (ALP) activity. The amount of the osteogenic transcription factor Osterix and the alizarin red-stained bone nodule formation. ATP was measured with the luciferin-luciferase bioluminescence assay. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC RESULTS: The extracellular catabolism of ATP and UDP was faster in BM-MSCs from Pm women compared to younger females. The immunoreactivity against NTPDase3 increased 5.6-fold in BM-MSCs from Pm women vs. younger females. Selective inhibition or transient NTPDase3 gene silencing increased the extracellular accumulation of adenine and uracil nucleotides in cultured Pm BM-MSCs. Downregulation of NTPDase3 expression or activity rehabilitated the osteogenic commitment of Pm BM-MSCs measured as increases in ALP activity, Osterix protein cellular content and bone nodule formation; blockage of P2X7 and P2Y6 purinoceptors prevented this effect. CONCLUSIONS: Data suggest that NTPDase3 overexpression in BM-MSCs may be a clinical surrogate of the osteogenic differentiation impairment in Pm women. Thus, besides P2X7 and P2Y6 receptors activation, targeting NTPDase3 may represent a novel therapeutic strategy to increase bone mass and reduce the osteoporotic risk of fractures in Pm women.
Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Feminino , Idoso , Adolescente , Adulto Jovem , Adulto , Pós-Menopausa , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Nucleotídeos de Uracila/metabolismo , Nucleotídeos de Uracila/farmacologia , Difosfato de Uridina/metabolismo , Difosfato de Uridina/farmacologia , Trifosfato de Adenosina/metabolismo , Células da Medula Óssea , Células CultivadasRESUMO
A series of adamantyl carboxamide derivatives containing sulfonate or sulfonamide moiety were designed as multitargeted inhibitors of ectonucleotide pyrophosphatases/phosphodiesterases (NPPs) and carbonic anhydrases (CAs). The target compounds were investigated for their antiproliferative activity against NCI-60 cancer cell lines panel. Three main series composed of 3- and 4-aminophenol, 4-aminoaniline, and 5-hydroxyindole scaffolds were designed based on a lead compound (A). Compounds 1e (benzenesulfonyl) and 1i (4-fluorobenzenesulfonyl) of 4-aminophenol backbone exhibited the most promising antiproliferative activity. Both compounds exhibited a broad-spectrum and potent inhibition against all the nine tested cancer subtypes. Both compounds showed nanomolar IC50 values over several cancer cell lines that belong to leukemia and colon cancer such as K-562, RPMI-8226, SR, COLO 205, HCT-116, HCT-15, HT29, KM12, and SW-620 cell lines. Compounds 1e and 1i induced apoptosis in K-562 leukemia cells in a dose-dependent manner. Compound 1i showed the highest cytotoxic activity with IC50 value of 200 nM against HT29 cell line. In addition, compounds 1e and 1i were tested against normal breast cells (HME1) and normal skin fibroblast cells (F180) and the results revealed that the compounds are safe toward normal cells compared to cancers cells. Enzymatic assays against NPP1-3 and carbonic anhydrases II, IX, and XII were performed to investigate the possible molecular target(s) of compounds 1e and 1i. Furthermore, a molecular docking study was performed to predict the binding modes of compounds 1e and 1i in the active site of the most sensitive enzymes subtypes.
Assuntos
Antineoplásicos , Anidrases Carbônicas , Leucemia , Humanos , Antineoplásicos/química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Leishmania infantum, the causative agent of American Visceral Leishmaniasis (VL), is known for its ability to modulate the host immune response to its own favor. Ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase) represents a family of enzymes that hydrolyze nucleotides and are involved in nucleotide-dependent biological processes. L. infantum has two ENTPDases, namely LiNTPDase1 and LiNTPDase2. Here, we used genetic tools to overexpress or abolish the expression of LiNTPDase1 and -2 to assess their role in parasite growth in culture and macrophage infection. While LiNTPDase1 or 2-overexpressing clones showed no morphological or growth changes in promastigotes, LiNTPDase2 overexpression increased macrophage adhesion and infection by 50% and 30%, respectively. The individual LiNTPDase1 and 2 knockout mutants showed lag in growth profile, which was reversed by the addition of adenine and guanine to the culture media. Moreover, the morphology of the knockout mutants even in supplemented media was changed to an amastigote-like form. The double knockout of both genes was lethal and a mechanism of compensation of deletion of one isoform was detected in these mutants. Correspondingly, the absence of LiNTPDase1 or LiNTPDase2 led to a dramatic reduction in in vitro infection (â¼90%). Interestingly, nitric oxide production was decreased in both knockout mutants during infection, which suggests that both LiNTPDases can inhibit macrophage responses against the parasite. Overall, our results show important roles of LiNTPDase1 and -2 concerning in vitro macrophage infection and reinforce their use as potential targets to control Leishmania infections.
Assuntos
Leishmania infantum , Leishmaniose Cutânea , Leishmaniose Visceral , Parasitos , Animais , Óxido Nítrico/metabolismo , Leishmaniose Visceral/parasitologia , Macrófagos , Parasitos/metabolismoRESUMO
The h-NTPDases is an essential family of ectonucleotidases that consists of eight isozymes with various physiological functions. The undesired activity of the h-NTPDases leads to pathological conditions such as cancer, diabetes, inflammation, and thrombosis. In the present study, a series of thienopyrimidines was synthesized employing a sequential SNAr and Suzuki coupling to synthesize diverse aryl substituted thienopyrimidine glycinate derivatives. The synthesized compounds constituted electron donating, electron-deficient, heteroaryl, and fluorinated substituents. The thienopyrimidines were screened against h-NTPDases to determine the effect on the activity of the h-NTPDases-1, -2, -3, and -8. The compound 3j selectively blocked the isozyme h-NTPDases1, while the compounds 3e, 3m, and 4a were selective inhibitors of h-NTPDases2. The activity of the isozyme h-NTPDases3 was selectively reduced by inhibitor 3k whereas, the compound 3d was found as the most active inhibitor against isozyme h-NTPDase8. The molecular docking study interpreted the interactions of the potent inhibitors of the respective isozymes with important amino acid residues i.e., Asp54, Ser57, His59, Ser58, His59, Asp213, and Phe360 of h-NTPDases1 protein; residues Arg 392, Ala393, Ala347, Tye350 and Arg245 of h-NTPDases2; amino acids Arg67, Ser65, Ala323, Gly222, and Tyr375 of h-NTPDases3 whereas in case of h-NTPDases8, the residues Val436, Gln74, Gly179, and Val71 were involved in interaction with the inhibitors docked into the active sites of these isozymes.
Assuntos
Isoenzimas , Pirimidinas , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Pirimidinas/farmacologia , Estrutura MolecularRESUMO
P2Y6 receptor (P2Y6R) antagonists represent potential drugs for treating cancer, pain, neurodegeneration, asthma, diabetes, colitis and other disorders. However, there are few chemical classes of known competitive antagonists. We recently explored the structure activity relationship (SAR) of 2H-chromene derivatives as P2Y6R antagonists of moderate affinity. New analogues in this series modified at five positions were synthesized and shown to antagonize Ca2+ transients induced by the native agonist UDP in human (h) P2Y6R-expressing (but not turkey P2Y1R-, hP2Y2R- or hP2Y4R-expressing) astrocytoma cells. Alternatives to the reported 2-(trifluoromethyl)- and 3-nitro- substitutions of this scaffold were not identified. However, 6fluoro 11 and 6chloro 12 analogues displayed enhanced potency compared to other halogens, although still in the 1 - 2 µM range. Similar halogen substitution at 5, 7 or 8 positions reduced affinity. 5- or 8Triethylsilylethynyl extension maintained hP2Y6R affinity, with IC50 0.46 µM for 26 (MRS4853). The 6,8difluoro analogue 27 (IC50 2.99 µM) lacked off-target activities among 45 sites examined, unlike earlier analogues that bound to biogenic amine receptors. 11 displayed only one weak off-target activity (σ2). Mouse P2Y6R IC50s of 5, 25, 26 and 27 were 4.94, 17.6, 6.15 and 17.8 µM, respectively, but most other analogues had reduced affinity (>20 µM) compared to the hP2Y6R. These analogues are suitable for evaluation in in vivo inflammation and cancer models, which will be performed in the future studies.
Assuntos
Receptores Purinérgicos P2 , Animais , Benzopiranos , Halogênios , Humanos , Camundongos , Receptores Purinérgicos P2/metabolismo , Relação Estrutura-Atividade , Difosfato de UridinaRESUMO
BACKGROUND: An important mechanism, by which cancer cells achieve immune escape, is the release of extracellular adenosine into their microenvironment. Adenosine activates adenosine A2A and A2B receptors on immune cells constituting one of the strongest immunosuppressive mediators. In addition, extracellular adenosine promotes angiogenesis, tumor cell proliferation, and metastasis. Cancer cells upregulate ectonucleotidases, most importantly CD39 and CD73, which catalyze the hydrolysis of extracellular ATP to AMP (CD39) and further to adenosine (CD73). Inhibition of CD39 is thus expected to be an effective strategy for the (immuno)therapy of cancer. However, suitable small molecule inhibitors for CD39 are not available. Our aim was to identify drug-like CD39 inhibitors and evaluate them in vitro. METHODS: We pursued a repurposing approach by screening a self-compiled collection of approved, mostly ATP-competitive protein kinase inhibitors, on human CD39. The best hit compound was further characterized and evaluated in various orthogonal assays and enzyme preparations, and on human immune and cancer cells. RESULTS: The tyrosine kinase inhibitor ceritinib, a potent anticancer drug used for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer, was found to strongly inhibit CD39 showing selectivity versus other ectonucleotidases. The drug displays a non-competitive, allosteric mechanism of CD39 inhibition exhibiting potency in the low micromolar range, which is independent of substrate (ATP) concentration. We could show that ceritinib inhibits ATP dephosphorylation in peripheral blood mononuclear cells in a dose-dependent manner, resulting in a significant increase in ATP concentrations and preventing adenosine formation from ATP. Importantly, ceritinib (1-10 µM) substantially inhibited ATP hydrolysis in triple negative breast cancer and melanoma cells with high native expression of CD39. CONCLUSIONS: CD39 inhibition might contribute to the effects of the powerful anticancer drug ceritinib. Ceritinib is a novel CD39 inhibitor with high metabolic stability and optimized physicochemical properties; according to our knowledge, it is the first brain-permeant CD39 inhibitor. Our discovery will provide the basis (i) to develop more potent and balanced dual CD39/ALK inhibitors, and (ii) to optimize the ceritinib scaffold towards interaction with CD39 to obtain potent and selective drug-like CD39 inhibitors for future in vivo studies.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apirase/imunologia , Apirase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Imunoterapia , Leucócitos Mononucleares/metabolismo , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas , Receptores Proteína Tirosina Quinases , Sulfonas , Microambiente TumoralRESUMO
Aberrant level of ectonucleotide pyrophosphatase/phosphodiesterase-1 and -3 is linked with numerous disorders, for instance, diabetes, cancer, osteoarthritis, chondrocalcinosis, and allergic reactions. These disorders may be cured or minimized by blocking the activity of ENPP1 and ENPP3 isozymes. In this study, arylamide sulphonates were synthesized, characterized, and evaluated for their capability to affect the activity of isozymes ENPP1 and ENPP3. Among the selective inhibitors of ENPP1, compounds 4f and 4q exhibited sub-micromolar IC50 values of 0.28 ± 0.08 and 0.37 ± 0.03 µM, respectively, followed by 7a, with IC50 equal to 0.81 ± 0.05 µM, whereas out of the selective inhibitors of isozyme ENPP3, 4t and 7d preferably lessened the activity to half of the maximal inhibitory concentration of 0.15 ± 0.04 and 0.16 ± 0.01 µM alternatively. In addition, many structures including 4c, 4g, 4k, 4l, 4n, 4o, 4r, 4s, 7b, 7c, and 7e inhibited the activity of both isozymes to a significant level. Enzyme kinetic study of compound 4j revealed an uncompetitive mode of inhibition of ENPP1 isozyme, while 7e competitively blocked the activity of ENPP3. Cell viability analysis revealed the compound 4o as a cytotoxic agent against MCF7 (human breast cancer cell line) with a percentage inhibition of 63.2 ± 2.51%, whereas compounds 4c, 4d, 4n, and 7d decreased the HeLa cell viability (human cervical cancer cell line) to more than 50%. The tested compounds were non-cytotoxic against HEK293 (a human embryonic kidney cell line). Molecular docking analysis of selected inhibitors of both isozymes produced optimistic interactions with the influential amino acids, such as Leu290, Lys295, Tyr340, Asp376, His380, and Pro323 of ENPP1, whereas residues Asn226, His329, Leu239, Tyr289, Pro272, Tyr320, and Ala205 of ENPP3 crystallographic structure formed interactions with the potent inhibitors.
RESUMO
OBJECTIVE: Nucleotides are danger signals that activate inflammatory responses via binding P2 receptors. The nucleoside triphosphate diphosphohydrolase-8 (NTPDase8) is an ectonucleotidase that hydrolyses P2 receptor ligands. We investigated the role of NTPDase8 in intestinal inflammation. DESIGN: We generated NTPDase8-deficient (Entpd8-/-) mice to define the role of NTPDase8 in the dextran sodium sulfate (DSS) colitis model. To assess inflammation, colons were collected and analysed by histopathology, reverse transcriptase-quantitative real-time PCR (RT-qPCR) and immunohistochemistry. P2 receptor expression was analysed by RT-qPCR on primary intestinal epithelium and NTPDase8 activity by histochemistry. The role of intestinal P2Y6 receptors was assessed by bone marrow transplantation experiments and with a P2Y6 receptor antagonist. RESULTS: NTPDase8 is the dominant enzyme responsible for the hydrolysis of nucleotides in the lumen of the colon. Compared with wild-type (WT) control mice, the colon of Entpd8-/- mice treated with DSS displayed significantly more histological damage, immune cell infiltration, apoptosis and increased expression of several proinflammatory cytokines. P2Y6 was the dominant P2Y receptor expressed at the mRNA level by the colonic epithelia. Irradiated P2ry6-/- mice transplanted with WT bone marrow were fully protected from DSS-induced intestinal inflammation. In agreement, the daily intrarectal injection of a P2Y6 antagonist protected mice from DSS-induced intestinal inflammation in a dose-dependent manner. Finally, human intestinal epithelial cells express NTPDase8 and P2Y6 similarly as in mice. CONCLUSION: NTPDase8 protects the intestine from inflammation most probably by limiting the activation of P2Y6 receptors in colonic epithelial cells. This may provide a novel therapeutic strategy for the treatment of inflammatory bowel disease.
Assuntos
Adenosina Trifosfatases/metabolismo , Colite/metabolismo , Isotiocianatos/farmacologia , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Tioureia/análogos & derivados , Adenosina Trifosfatases/genética , Animais , Apoptose , Transplante de Medula Óssea , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Humanos , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tioureia/farmacologiaRESUMO
The antithrombotic prodrugs ticlopidine and clopidogrel are thienotetrahydro-pyridine derivatives that are metabolized in the liver to produce thiols that irreversibly block adenosine diphosphate (ADP)-activated P2Y12 receptors on thrombocytes. In their native, nonmetabolized form, both drugs were reported to act as inhibitors of ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39). CD39 catalyzes the extracellular hydrolysis of nucleoside tri- and diphosphates, mainly adenosine 5'-triphosphate (ATP) and ADP, yielding adenosine monophosphate, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to produce adenosine. While ATP has proinflammatory effects, adenosine is a potent anti-inflammatory, immunosuppressive agent. Inhibitors of CD39 and CD73 have potential as novel checkpoint inhibitors for the immunotherapy of cancer and infection. In the present study, we investigated 2-substituted thienotetrahydropyridine derivatives, structurally related to ticlopidine, as CD39 inhibitors. Due to their substituent on the 2-position, they will not be metabolically transformed into reactive thiols and can, therefore, be expected to be devoid of P2Y12 receptor-antagonistic activity in vivo. Several of the investigated 2-substituted thienotetrahydropyridine derivatives showed concentration-dependent inhibition of CD39. The most potent derivative, 32, showed similar CD39-inhibitory potency to ticlopidine, both acting as allosteric inhibitors. Compound 32 showed an improved selectivity profile: While ticlopidine blocked several NTPDase isoenzymes, 32 was characterized as a novel dual inhibitor of CD39 and CD73.
Assuntos
5'-Nucleotidase/antagonistas & inibidores , Apirase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Tienopiridinas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos , Relação Estrutura-Atividade , Tienopiridinas/síntese química , Tienopiridinas/química , Ticlopidina/farmacologiaRESUMO
Sepsis is life-threatening organ dysfunction caused by a dysregulated inflammatory and immune response to infection. Sepsis involves the combination of exaggerated inflammation and immune suppression. During systemic infection and sepsis, the liver works as a lymphoid organ with key functions in regulating the immune response. Extracellular nucleotides are considered damage-associated molecular patterns and are involved in the control of inflammation. Their levels are finely tuned by the membrane-associated ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family. Although previous studies have addressed the role of NTPDase1 (CD39), the role of the other extracellular NTPDases, NTPDase2, -3, and -8, in sepsis is unclear. In the present studies we identified NTPDase8 as a top downregulated gene in the liver of mice submitted to cecal ligation-induced sepsis. Immunohistochemical analysis confirmed the decrease of NTPDase8 expression at the protein level. In vitro mechanistic studies using HepG2 hepatoma cells demonstrated that IL-6 but not TNF, IL-1ß, bacteria, or lipopolysaccharide are able to suppress NTPDase8 gene expression. NTPDase8, as well as NTPDase2 and NTPDase3 mRNA was downregulated, whereas NTPDase1 (CD39) mRNA was upregulated in polymorphonuclear leukocytes from both inflamed and septic patients compared to healthy controls. Although the host's inflammatory response of polymicrobial septic NTPDase8 deficient mice was no different from that of wild-type mice, IL-6 levels in NTPDase8 deficient mice were higher than IL-6 levels in wild-type mice with pneumonia. Altogether, the present data indicate that extracellular NTPDases are differentially regulated during sepsis.
Assuntos
Adenosina Trifosfatases/metabolismo , Inflamação/metabolismo , Leucócitos/metabolismo , Sepse/metabolismo , Adenosina Trifosfatases/genética , Animais , Feminino , Humanos , Inflamação/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Sepse/genéticaRESUMO
Quinoline derivatives have interesting biological profile. In continuation for the comprehensive evaluations of substituted quinoline derivatives against human nucleoside triphosphate diphosphohydrolases (h-NTPDases) a series of substituted quinoline derivatives (2a-g, 3a-f, 4, 5a-c, 6) was synthesized. The inhibitory activities of the synthesized compounds were evaluated against four isoenzymes of human nucleoside triphosphate diphosphohydrolases (h-NTPDases). These quinoline derivatives had IC50 (µM) values in the range of 0.20-1.75, 0.77-2.20, 0.36-5.50 and 0.90-1.82 for NTPDase1, NTPDase2, NTPDase3 and NTPDase8, respectively. The derivative 3f was the most active compound against NTPDase1 (IC50, 0.20 ± 0.02 µM) that also possessed selectivity towards NTPDase1. Similarly, derivative 3b (IC50, 0.77 ± 0.06), 2h (IC50, 0.36 ± 0.01) and 2c (IC50, 0.90 ± 0.08) displayed excellent activity corresponding to NTPDase2, NTPDase3 and NTPdase8. The compound 5c emerged as a selective inhibitor of NTPDase8. The most active compounds were then investigated to determine their mode of inhibition and finally binding interactions of the active compounds were analyzed through molecular docking studies. The obtained results strongly support the quinoline scaffold's potential as potent and selective NTPDase inhibitor.
Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Apirase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Quinolinas/farmacologia , Adenosina Trifosfatases/metabolismo , Apirase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-AtividadeRESUMO
Members of the ectonucleoside triphosphate diphosphohydrolases (NTPDases) constitute the major family of enzymes responsible for the maintenance of extracellular levels of nucleotides and nucleosides by catalyzing the hydrolysis of nucleoside triphosphate (NTP) and nucleoside diphosphates (NDP) to nucleoside monophosphate (NMP). Although, NTPDase inhibitors can act as potential drug candidates for the treatment of various diseases, there is lack of potent as well as selective inhibitors of NTPDases. The current study describes the synthesis of a number of carboxamide derivatives that were tested on recombinant human (h) NTPDases. The most promising inhibitors were 2h (h-NTPDase1, IC50: 0.12 ± 0.03 µM), 2d (h-NTPDase2, IC50: 0.15 ± 0.01 µM) and 2a (h-NTPDase3, IC50: 0.30 ± 0.04 µM; h-NTPDase8, IC50: 0.16 ± 0.02 µM). Four compounds (2e, 2f, 2g and 2h) were associated with the selective inhibition of h-NTPDase1 while 2b was identified as a selective h-NTPDase3 inhibitor. Considering the importance of NTPDase3 in the regulation of insulin release, the NTPDase3 inhibitors were further investigated to elucidate their role in the insulin release. The obtained data suggested that compound 2a was actively participating in regulating the insulin release without producing any effect on NTPDase3 mRNA. Moreover, the most potent inhibitors were docked within the active site of respective enzyme and the observed interactions were in compliance with in vitro results. Hence, these compounds can be used as pharmacological tool to further investigate the role of NTPDase3 coupled to insulin release.
Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Simulação de Acoplamento Molecular , Fenil-Hidrazinas/farmacologia , Adenosina Trifosfatases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Fenil-Hidrazinas/síntese química , Fenil-Hidrazinas/química , Relação Estrutura-AtividadeRESUMO
Ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) together with nucleoside triphosphate diphosphohydrolases (NTPDases) and alkaline phosphatases (APs) are nucleotidases located at the surface of the cells. NPP1 and NPP3 are important members of NPP family that are known as druggable targets for a number of disorders such as impaired calcification, type 2 diabetes, and cancer. Sulfonylurea derivatives have been reported as antidiabetic and anticancer agents, therefore, we synthesized and investigated series of sulfonylurea derivatives 1a-m possessing pyrrolo[2,3-b]pyridine core as inhibitors of NPP1 and NPP3 isozymes that are over-expressed in cancer and diabetes. The enzymatic evaluation highlighted compound 1a as selective NPP1 inhibitor, however, 1c was observed as the most potent inhibitor of NPP1 with an IC50 value of 0.80 ± 0.04 µM. Compound 1l was found to be the most potent and moderately selective inhibitor of NPP3 (IC50 = 0.55 ± 0.01 µM). Furthermore, in vitro cytotoxicity assays of compounds 1a-m against MCF-7 and HT-29 cancer cell lines exhibited compound 1c (IC50 = 4.70 ± 0.67 µM), and 1h (IC50 = 1.58 ± 0.20 µM) as the most cytotoxic compounds against MCF-7 and HT-29 cancer cell lines, respectively. Both of the investigated compounds showed high degree of selectivity towards cancer cells than normal cells (WI-38). Molecular docking studies of selective and potent enzyme inhibitors revealed promising mode of interactions with important binding sites residues of both isozymes i.e., Thr256, His380, Lys255, Asn277 residues of NPP1 and His329, Thr205, and Leu239 residues of NPP3. In addition, the most potent antiproliferative agent, compound 1h, doesn't produce hypoglycemia as a side effect when injected to mice. This is an additional merit of the promising compound 1h.
Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Piridinas/farmacologia , Pirofosfatases/antagonistas & inibidores , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Diester Fosfórico Hidrolases/metabolismo , Piridinas/síntese química , Piridinas/química , Pirofosfatases/metabolismo , Pirróis/síntese química , Pirróis/química , Relação Estrutura-AtividadeRESUMO
Nucleotides released by smooth muscle cells (SMCs) and by innervating nerve terminals activate specific P2 receptors and modulate bladder contraction. We hypothesized that cell surface enzymes regulate SMC contraction in mice bladder by controlling the concentration of nucleotides. We showed by immunohistochemistry, enzymatic histochemistry, and biochemical activities that nucleoside triphosphate diphosphohydrolase-1 (NTPDase1) and ecto-5'-nucleotidase were the major ectonucleotidases expressed by SMCs in the bladder. RT-qPCR revealed that, among the nucleotide receptors, there was higher expression of P2X1, P2Y1, and P2Y6 receptors. Ex vivo, nucleotides induced a more potent contraction of bladder strips isolated from NTPDase1 deficient (Entpd1-/-) mice compared to wild type controls. The strongest responses were obtained with uridine 5'-triphosphate (UTP) and uridine 5'-diphosphate (UDP), suggesting the involvement of P2Y6 receptors, which was confirmed with P2ry6-/- bladder strips. Interestingly, this response was reduced in female bladders. Our results also suggest the participation of P2X1, P2Y2 and/or P2Y4, and P2Y12 in these contractions. A reduced response to the thromboxane analogue U46619 was also observed in wild type, Entpd1-/-, and P2ry6-/- female bladders showing another difference due to sex. In summary, NTPDase1 modulates the activation of nucleotide receptors in mouse bladder SMCs, and contractions induced by P2Y6 receptor activation were weaker in female bladders.
Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Nucleotídeos/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Feminino , Perfilação da Expressão Gênica , Hidrólise , Masculino , Camundongos , Contração Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nucleotídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Difosfato de Uridina/metabolismo , Bexiga Urinária/metabolismoRESUMO
Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.
Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Apirase/antagonistas & inibidores , Polissacarídeos/fisiologia , Pirofosfatases/antagonistas & inibidores , Alga Marinha , Ésteres do Ácido Sulfúrico/farmacologia , Trifosfato de Adenosina/metabolismo , Apirase/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Hidrólise/efeitos dos fármacos , Diester Fosfórico Hidrolases/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Pirofosfatases/metabolismo , Alga Marinha/química , Alga Marinha/isolamento & purificação , Ésteres do Ácido Sulfúrico/química , Ésteres do Ácido Sulfúrico/isolamento & purificaçãoRESUMO
AIMS: The present study was conducted to examine the inhibitory effects of synthesized sulfonylhydrazones on the expression of CD73 (ecto-5'-NT). BACKGROUND: CD73 (ecto-5'-NT) represents the most significant class of ecto-nucleotidases, which are mainly responsible for the dephosphorylation of adenosine monophosphate to adenosine. Inhibition of CD73 played an important role in the treatment of cancer, autoimmune disorders, precancerous syndromes, and some other diseases associated with CD73 activity. OBJECTIVE: Keeping in view the significance of CD73 inhibitor in the treatment of cervical cancer, a series of sulfonylhydrazones (3a-3i) derivatives synthesized from 3-formylchromones were evaluated. METHODS: All sulfonylhydrazones (3a-3i) were evaluated for their inhibitory activity towards CD73 (ecto-5'-NT) by the malachite green assay and their cytotoxic effect was investigated on the HeLa cell line using MTT assay. Secondly, the most potent compound was selected for cell apoptosis, immunofluorescence staining, and cell cycle analysis. After that, CD73 mRNA and protein expression were analyzed by real-time PCR and Western blot. RESULTS: Among all compounds, 3h, 3e, 3b, and 3c were found to be the most active against rat-ecto- 5'-NT (CD73) enzyme with IC50 (µM) values of 0.70 ± 0.06 µM, 0.87 ± 0.05 µM, 0.39 ± 0.02 µM, and 0.33 ± 0.03 µM, respectively. These derivatives were further evaluated for their cytotoxic potential against cancer cell line (HeLa). Compounds 3h and 3c showed the cytotoxicity at IC50 value of 30.20 ± 3.11 µM and 86.02 ± 7.11 µM, respectively. Furthermore, compound 3h was selected for cell apoptosis, immunofluorescence staining, and cell cycle analysis, which showed a promising apoptotic effect in HeLa cells. Additionally, compound 3h was further investigated for its effect on the expression of CD73 using qRT-PCR and western blot. CONCLUSION: Among all synthesized compounds (3a-3i), Compound 3h (E)-N'-((6-ethyl-4-oxo-4Hchromen- 3-yl) methylene)-4-methylbenzenesulfonohydrazide was identified as the most potent compound. Additional expression studies conducted on the HeLa cell line proved that this compound successfully decreased the expression level of CD73 and thus, inhibited the growth and proliferation of cancer cells.