Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(9)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37174695

RESUMO

In chronic lymphocytic leukemia (CLL), an elevated glycosyltransferase UGT2B17 expression (UGT2B17HI) identifies a subgroup of patients with shorter survival and poor drug response. We uncovered a mechanism, possibly independent of its enzymatic function, characterized by an enhanced expression and signaling of the proximal effectors of the pro-survival B cell receptor (BCR) pathway and elevated Bruton tyrosine kinase (BTK) phosphorylation in B-CLL cells from UGT2B17HI patients. A prominent feature of B-CLL cells is the strong correlation of UGT2B17 expression with the adverse marker ZAP70 encoding a tyrosine kinase that promotes B-CLL cell survival. Their combined high expression levels in the treatment of naïve patients further defined a prognostic group with the highest risk of poor survival. In leukemic cells, UGT2B17 knockout and repression of ZAP70 reduced proliferation, suggesting that the function of UGT2B17 might involve ZAP70. Mechanistically, UGT2B17 interacted with several kinases of the BCR pathway, including ZAP70, SYK, and BTK, revealing a potential therapeutic vulnerability. The dual SYK and JAK/STAT6 inhibitor cerdulatinib most effectively compromised the proliferative advantage conferred by UGT2B17 compared to the selective BTK inhibitor ibrutinib. Findings point to an oncogenic role for UGT2B17 as a novel constituent of BCR signalosome also connected with microenvironmental signaling.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Fosforilação , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo
2.
Cancers (Basel) ; 13(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477957

RESUMO

Mitochondrial respiration is becoming more commonly used as a preclinical tool and potential biomarker for chronic lymphocytic leukemia (CLL) and activated B-cell receptor (BCR) signaling. However, respiration parameters have not been evaluated with respect to dose of ibrutinib given in clinical practice or the effect of progression on ibrutinib treatment on respiration of CLL cells. We evaluated the impact of low and standard dose ibrutinib on CLL cells from patients treated in vivo on mitochondrial respiration using Oroboros oxygraph. Cytokines CCL3 and CCL4 were evaluated using the Mesoscale. Western blot analysis was used to evaluate the BCR and apoptotic pathways. We observed no difference in the mitochondrial respiration rates or levels of plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4), ß-2 microglobulin (ß-2 M) and lactate dehydrogenase (LDH) between low and standard doses of ibrutinib. This may confirm why clinical observations of the safety and efficacy of low dose ibrutinib are observed in practice. Of interest, we also observed that the mitochondrial respiration of CLL cells paralleled the increase in ß-2 M and LDH at progression. Our study further supports mitochondrial respiration as a biomarker for response and progression on ibrutinib in CLL cells and a valuable pre-clinical tool.

3.
Cancers (Basel) ; 12(3)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168755

RESUMO

Mitochondrial bioenergetics profiling, a measure of oxygen consumption rates, correlates with prognostic markers and can be used to assess response to therapy in chronic lymphocytic leukemia (CLL) cells. In this study, we measured mitochondrial respiration rates in primary CLL cells using respirometry to evaluate mitochondrial function. We found significant increases in mitochondrial respiration rates in CLL versus control B lymphocytes. We also observed amongst CLL patients that advanced age, female sex, zeta-chain-associated protein of 70 kD (ZAP-70+), cluster of differentiation 38 (CD38+), and elevated ß2-microglobulin (ß2-M) predicted increased maximal respiration rates. ZAP-70+ CLL cells exhibited significantly higher bioenergetics than B lymphocytes or ZAP-70- CLL cells and were more sensitive to the uncoupler, carbonyl cyanide-p-trifluoro-methoxyphenylhydrazone (FCCP). Univariable and multivariable linear regression analysis demonstrated that ZAP-70+ predicted increased maximal respiration. ZAP-70+ is a surrogate for B cell receptor (BCR) activation and can be targeted by ibrutinib, which is a clinically approved Bruton's tyrosine kinase (BTK) inhibitor. Therefore, we evaluated the oxygen consumption rates (OCR) of CLL cells and plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4) levels from ibrutinib-treated patients and demonstrated decreased OCR similar to control B lymphocytes, suggesting that ibrutinib treatment resets the mitochondrial bioenergetics, while diminished CCL3/CCL4 levels indicate the down regulation of the BCR signaling pathway in CLL. Our data support evaluation of mitochondrial respiration as a preclinical tool for the response assessment of CLL cells.

5.
JPEN J Parenter Enteral Nutr ; 32(1): 51-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18165447

RESUMO

BACKGROUND: In vitro, butyrate inhibits histone deacetylase and down-regulates expression of cyclin D1. We hypothesized that an increased entry rate of butyrate into the cecal lumen would have similar effects in vivo. METHODS: We used frozen cecal tissue and data from previous studies, one showing that lactulose supplementation caused an increased rate of cecal synthesis of butyrate and decreased cecal cell proliferation and density of clostridia and the other showing that cecal cell proliferation was increased by an exogenous cecal butyrate infusion at a comparable rate. The ratio of acetylated to total histones (AH ratio) and cyclin D1 mRNA expression were measured in cecal tissue. RESULTS: Lactulose supplementation caused a 189% increase in the AH ratio (p = .004), which inversely correlated with cecal cell proliferation (r = -0.782; p = .008). With cecal butyrate infusion, we observed a significant decrease in histone acetylation (p = .02), which also inversely correlated with cecal cell proliferation (r = -0.797; p = .002). Cyclin D1 expression was increased 6.5-fold by lactulose feeding (p = .02) but decreased 50% with cecal butyrate infusion (p = .004). CONCLUSIONS: The effects on histone acetylation of increased "endogenous" butyrate production produced by lactulose feeding, but not exogenous cecal infusion of butyrate, mirror those in vitro. Thus, bacterial production and exogenous infusion of butyrate have opposite effects on histone acetylation and cyclin D1 expression, suggesting that the composition of bacterial flora may play a role in butyrate's in vivo effects on the cell cycle.


Assuntos
Bactérias/metabolismo , Butiratos/farmacologia , Ceco/metabolismo , Ciclina D1/metabolismo , Histonas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Fármacos Gastrointestinais/farmacologia , Regulação da Expressão Gênica , Inibidores de Histona Desacetilases , Histonas/efeitos dos fármacos , Lactulose/farmacologia , Suínos
6.
J Cell Biochem ; 93(3): 619-28, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15378598

RESUMO

Expression of an estrogen receptor alpha (ER) transgene in hormone independent breast cancer and normal breast epithelial cells arrests cell cycling when estradiol is added. Although endogenously expressed ER does not typically affect estradiol-induced cell cycling of hormone dependent breast cancer cells, we observed that elevated expression of a green fluorescent protein fused to ER (GFP-ER) hindered entry of estrogen treated MCF-7 cells into S phase of the cell cycle. In analyses of key cell-cycle regulating proteins, we observed that GFP-ER expression had no affect on the protein levels of cyclin D1, cyclin E, or p27, a cyclin dependent kinase (Cdk) inhibitor. However, at 24 h, p21 (Waf1, Cip1; a Cdk2 inhibitor) protein remained elevated in the high GFP-ER expressing cells but not in non-GFP-ER expressing cells. Elevated expression of p21 inhibited Cdk2 activity, preventing cells from entering S phase. The results show that elevated levels of ER prevented the down-regulation of p21 protein expression, which is required for hormone responsive cells to enter S phase.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação para Baixo/fisiologia , Receptor alfa de Estrogênio/metabolismo , Fase S/fisiologia , Quinases relacionadas a CDC2 e CDC28/metabolismo , Ciclina D1/metabolismo , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21 , Inibidor de Quinase Dependente de Ciclina p27 , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo
7.
Oncogene ; 21(55): 8397-403, 2002 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12466960

RESUMO

Phosphorylation of linker histone H1(S)-3 (previously named H1b) and core histone H3 is elevated in mouse fibroblasts transformed with oncogenes or constitutively active mitogen-activated protein kinase (MAPK) kinase (MEK). H1(S)-3 phosphorylation is the only histone modification known to be dependent upon transcription and replication. Our results show that the increased amounts of phosphorylated H1(S)-3 in the oncogene Ha-ras-transformed mouse fibroblasts was a consequence of an elevated Cdk2 activity rather than the reduced activity of a H1 phosphatase, which our studies suggest is PP1. Induction of oncogenic ras expression results in an increase in H1(S)-3 and H3 phosphorylation. However, in contrast to the phosphorylation of H3, which occurred immediately following the onset of Ras expression, there was a lag of several hours before H1(S)-3 phosphorylation levels increased. We found that there was a transient increase in the levels of p21(cip1), which inhibited the H1 kinase activity of Cdk2. Cdk2 activity and H1(S)-3 phosphorylated levels increased after p21(cip1) levels declined. Our studies suggest that persistent activation of the Ras-MAPK signal transduction pathway in oncogene-transformed cells results in deregulated activity of kinases phosphorylating H3 and H1(S)-3 associated with transcribed genes. The chromatin remodelling actions of these modified histones may result in aberrant gene expression.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Linhagem Celular Transformada , Genes ras , Histonas/metabolismo , Animais , Divisão Celular , Linhagem Celular , Quinase 2 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21 , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Inibidores Enzimáticos/metabolismo , Fibroblastos , Regulação da Expressão Gênica , Cinética , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA