Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Pharmaceutics ; 15(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38139993

RESUMO

Pancreatic cancer remains a formidable challenge due to limited treatment options and its aggressive nature. In recent years, the naturally occurring anticancer compound juglone has emerged as a potential therapeutic candidate, showing promising results in inhibiting tumor growth and inducing cancer cell apoptosis. However, concerns over its toxicity have hampered juglone's clinical application. To address this issue, we have explored the use of polymeric micelles as a delivery system for juglone in pancreatic cancer treatment. These micelles, formulated using Poloxamer 407 and D-α-Tocopherol polyethylene glycol 1000 succinate, offer an innovative solution to enhance juglone's therapeutic potential while minimizing toxicity. In-vitro studies have demonstrated that micelle-formulated juglone (JM) effectively decreases proliferation and migration and increases apoptosis in pancreatic cancer cell lines. Importantly, in-vivo, JM exhibited no toxicity, allowing for increased dosing frequency compared to free drug administration. In mice, JM significantly reduced tumor growth in subcutaneous xenograft and orthotopic pancreatic cancer models. Beyond its direct antitumor effects, JM treatment also influenced the tumor microenvironment. In immunocompetent mice, JM increased immune cell infiltration and decreased stromal deposition and activation markers, suggesting an immunomodulatory role. To understand JM's mechanism of action, we conducted RNA sequencing and subsequent differential expression analysis on tumors that were treated with JM. The administration of JM treatment reduced the expression levels of the oncogenic protein MYC, thereby emphasizing its potential as a focused, therapeutic intervention. In conclusion, the polymeric micelles-mediated delivery of juglone holds excellent promise in pancreatic cancer therapy. This approach offers improved drug delivery, reduced toxicity, and enhanced therapeutic efficacy.

2.
Nat Commun ; 14(1): 5665, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704631

RESUMO

Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new therapies, however, few mouse models represent the complexity of TNBC. Here, we develop a female TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN. This Myc;Ptenfl model develops heterogeneous triple-negative mammary tumors that display histological and molecular features commonly found in human TNBC. Our research involves deep molecular and spatial analyses on Myc;Ptenfl tumors including bulk and single-cell RNA-sequencing, and multiplex tissue-imaging. Through comparison with human TNBC, we demonstrate that this genetic mouse model develops mammary tumors with differential survival and therapeutic responses that closely resemble the inter- and intra-tumoral and microenvironmental heterogeneity of human TNBC, providing a pre-clinical tool for assessing the spectrum of patient TNBC biology and drug response.


Assuntos
Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Agressão , Modelos Animais de Doenças , Mutação , PTEN Fosfo-Hidrolase/genética , Neoplasias de Mama Triplo Negativas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
3.
Sci Adv ; 9(27): eadf6621, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37406115

RESUMO

Nuclear receptors (NRs) are implicated in the regulation of tumors and immune cells. We identify a tumor-intrinsic function of the orphan NR, NR2F6, regulating antitumor immunity. NR2F6 was selected from 48 candidate NRs based on an expression pattern in melanoma patient specimens (i.e., IFN-γ signature) associated with positive responses to immunotherapy and favorable patient outcomes. Correspondingly, genetic ablation of NR2F6 in a mouse melanoma model conferred a more effective response to PD-1 therapy. NR2F6 loss in B16F10 and YUMM1.7 melanoma cells attenuated tumor development in immune-competent but not -incompetent mice via the increased abundance of effector and progenitor-exhausted CD8+ T cells. Inhibition of NACC1 and FKBP10, identified as NR2F6 effectors, phenocopied NR2F6 loss. Inoculation of NR2F6 KO mice with NR2F6 KD melanoma cells further decreased tumor growth compared with NR2F6 WT mice. Tumor-intrinsic NR2F6 function complements its tumor-extrinsic role and justifies the development of effective anticancer therapies.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Animais , Camundongos , Imunoterapia , Melanoma/genética , Proteínas Repressoras/metabolismo
4.
Front Physiol ; 14: 1215535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440997

RESUMO

Introduction: The response of the brain to space radiation is an important concern for astronauts during space missions. Therefore, we assessed the response of the brain to 28Si ion irradiation (600 MeV/n), a heavy ion present in the space environment, on cognitive performance and whether the response is associated with altered DNA methylation in the hippocampus, a brain area important for cognitive performance. Methods: We determined the effects of 28Si ion irradiation on object recognition, 6-month-old mice irradiated with 28Si ions (600 MeV/n, 0.3, 0.6, and 0.9 Gy) and cognitively tested two weeks later. In addition, we determined if those effects were associated with alterations in hippocampal networks and/or hippocampal DNA methylation. Results: At 0.3 Gy, but not at 0.6 Gy or 0.9 Gy, 28Si ion irradiation impaired cognition that correlated with altered gene expression and 5 hmC profiles that mapped to specific gene ontology pathways. Comparing hippocampal DNA hydroxymethylation following proton, 56Fe ion, and 28Si ion irradiation revealed a general space radiation synaptic signature with 45 genes that are associated with profound phenotypes. The most significant categories were glutamatergic synapse and postsynaptic density. Discussion: The brain's response to space irradiation involves novel excitatory synapse and postsynaptic remodeling.

5.
Nat Commun ; 13(1): 7391, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450762

RESUMO

Expression of guide RNAs in the CRISPR/Cas9 system typically requires the use of RNA polymerase III promoters, which are not cell-type specific. Flanking the gRNA with self-cleaving ribozyme motifs to create a self-cleaving gRNA overcomes this limitation. Here, we use self-cleaving gRNAs to create drug-selectable gene editing events in specific hepatocyte loci. A recombinant Adeno Associated Virus vector targeting the Albumin locus with a promoterless self-cleaving gRNA to create drug resistance is linked in cis with the therapeutic transgene. Gene expression of both are dependent on homologous recombination into the target locus. In vivo drug selection for the precisely edited hepatocytes allows >30-fold expansion of gene-edited cells and results in therapeutic levels of a human Factor 9 transgene. Importantly, self-cleaving gRNA expression is also achieved after targeting weak hepatocyte genes. We conclude that self-cleaving gRNAs are a powerful system to enable cell-type specific in vivo drug resistance for therapeutic gene editing applications.


Assuntos
RNA Catalítico , RNA Guia de Cinetoplastídeos , Humanos , RNA Guia de Cinetoplastídeos/genética , Edição de Genes , Recombinação Homóloga , RNA Catalítico/genética , Transgenes
6.
Mol Cell Biol ; 42(7): e0001822, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35703534

RESUMO

Yes-associated protein 1 (YAP1) is indispensable for the development of mutant KRAS-driven pancreatic ductal adenocarcinoma (PDAC). High YAP1 mRNA is a prognostic marker for worse overall survival in patient samples; however, the regulatory mechanisms that mediate its overexpression are not well understood. YAP1 genetic alterations are rare in PDAC, suggesting that its dysregulation is likely not due to genetic events. HuR is an RNA-binding protein whose inhibition impacts many cancer-associated pathways, including the "conserved YAP1 signature" as demonstrated by gene set enrichment analysis. Screening publicly available and internal ribonucleoprotein immunoprecipitation (RNP-IP) RNA sequencing (RNA-Seq) data sets, we discovered that YAP1 is a high-confidence target, which was validated in vitro with independent RNP-IPs and 3' untranslated region (UTR) binding assays. In accordance with our RNA sequencing analysis, transient inhibition (e.g., small interfering RNA [siRNA] and small-molecular inhibition) and CRISPR knockout of HuR significantly reduced expression of YAP1 and its transcriptional targets. We used these data to develop a HuR activity signature (HAS), in which high expression predicts significantly worse overall and disease-free survival in patient samples. Importantly, the signature strongly correlates with YAP1 mRNA expression. These findings highlight a novel mechanism of YAP1 regulation, which may explain how tumor cells maintain YAP1 mRNA expression at dynamic times during pancreatic tumorigenesis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Regiões 3' não Traduzidas/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Mensageiro/genética , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Sinalização YAP , Neoplasias Pancreáticas
7.
Cancers (Basel) ; 14(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406624

RESUMO

Human Antigen R (HuR/ELAVL1) is known to regulate stability of mRNAs involved in pancreatic ductal adenocarcinoma (PDAC) cell survival. Although several HuR targets are established, it is likely that many remain currently unknown. Here, we identified BARD1 mRNA as a novel target of HuR. Silencing HuR caused a >70% decrease in homologous recombination repair (HRR) efficiency as measured by the double-strand break repair (pDR-GFP reporter) assay. HuR-bound mRNAs extracted from RNP-immunoprecipitation and probed on a microarray, revealed a subset of HRR genes as putative HuR targets, including the BRCA1-Associated-Ring-Domain-1 (BARD1) (p < 0.005). BARD1 genetic alterations are infrequent in PDAC, and its context-dependent upregulation is poorly understood. Genetic silencing (siRNA and CRISPR knock-out) and pharmacological targeting of HuR inhibited both full length (FL) BARD1 and its functional isoforms (α, δ, Φ). Silencing BARD1 sensitized cells to olaparib and oxaliplatin; caused G2-M cell cycle arrest; and increased DNA-damage while decreasing HRR efficiency in cells. Exogenous overexpression of BARD1 in HuR-deficient cells partially rescued the HRR dysfunction, independent of an HuR pro-oncogenic function. Collectively, our findings demonstrate for the first time that BARD1 is a bona fide HuR target, which serves as an important regulatory point of the transient DNA-repair response in PDAC cells.

8.
Mol Cancer Res ; 20(7): 1151-1165, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35380701

RESUMO

As a transcription factor that promotes cell growth, proliferation, and apoptosis, c-MYC (MYC) expression in the cell is tightly controlled. Disruption of oncogenic signaling pathways in human cancers can increase MYC protein stability, due to altered phosphorylation ratios at two highly conserved sites, Threonine 58 (T58) and Serine 62 (S62). The T58 to Alanine mutant (T58A) of MYC mimics the stabilized, S62 phosphorylated, and highly oncogenic form of MYC. The S62A mutant is also stabilized, lacks phosphorylation at both Serine 62 and Threonine 58, and has been shown to be nontransforming in vitro. However, several regulatory proteins are reported to associate with MYC lacking phosphorylation at S62 and T58, and the role this form of MYC plays in MYC transcriptional output and in vivo oncogenic function is understudied. We generated conditional c-Myc knock-in mice in which the expression of wild-type MYC (MYCWT), the T58A mutant (MYCT58A), or the S62A mutant (MYCS62A) with or without expression of endogenous Myc is controlled by the T-cell-specific Lck-Cre recombinase. MYCT58A expressing mice developed clonal T-cell lymphomas with 100% penetrance and conditional knock-out of endogenous Myc accelerated this lymphomagenesis. In contrast, MYCS62A mice developed clonal T-cell lymphomas at a much lower penetrance, and the loss of endogenous MYC reduced the penetrance while increasing the appearance of a non-transgene driven B-cell lymphoma with splenomegaly. Together, our study highlights the importance of regulated phosphorylation of MYC at T58 and S62 for T-cell transformation. IMPLICATIONS: Dysregulation of phosphorylation at conserved T58 and S62 residues of MYC differentially affects T-cell development and lymphomagenesis.


Assuntos
Linfoma de Células T , Proteínas Proto-Oncogênicas c-myc , Treonina , Animais , Carcinogênese , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Serina/metabolismo , Linfócitos T/metabolismo , Treonina/genética , Fatores de Transcrição/metabolismo
9.
Stem Cell Res ; 56: 102523, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34601385

RESUMO

BACKGROUND & AIMS: Mature hepatocytes have limited expansion capability in culture and rapidly loose key functions. Recently however, tissue culture conditions have been developed that permit rodent hepatocytes to proliferate and transform into progenitor-like cells with ductal characteristics in vitro. Analogous cells expressing both hepatic and duct markers can be found in human cirrhotic liver in vivo and may represent an expandable population. METHODS: An in vitro culture system to expand epithelial cells from human end stage liver disease organs was developed by inhibiting the canonical TGF-ß, Hedgehog and BMP pathways. RESULTS: Human cirrhotic liver epithelial cells became highly proliferative in vitro. Both gene expression and DNA methylation site analyses revealed that cirrhosis derived epithelial liver cells were intermediate between normal hepatocytes and cholangiocytes. Mouse hepatocytes could be expanded under the same conditions and retained the ability to re-differentiate into hepatocytes upon transplantation. In contrast, human cirrhotic liver derived cells had only low re-differentiation capacity. CONCLUSIONS: Epithelial cells of intermediate ductal-hepatocytic phenotype can be isolated from human cirrhotic livers and expanded in vitro. Unlike their murine counterparts they have limited liver repopulation potential.


Assuntos
Hepatócitos , Fígado , Animais , Diferenciação Celular , Células Cultivadas , Células Epiteliais , Cirrose Hepática , Camundongos
11.
J Clin Invest ; 130(1): 231-246, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31763993

RESUMO

The c-MYC (MYC) oncoprotein is often overexpressed in human breast cancer; however, its role in driving disease phenotypes is poorly understood. Here, we investigate the role of MYC in HER2+ disease, examining the relationship between HER2 expression and MYC phosphorylation in HER2+ patient tumors and characterizing the functional effects of deregulating MYC expression in the murine NeuNT model of amplified-HER2 breast cancer. Deregulated MYC alone was not tumorigenic, but coexpression with NeuNT resulted in increased MYC Ser62 phosphorylation and accelerated tumorigenesis. The resulting tumors were metastatic and associated with decreased survival compared with NeuNT alone. MYC;NeuNT tumors had increased intertumoral heterogeneity including a subtype of tumors not observed in NeuNT tumors, which showed distinct metaplastic histology and worse survival. The distinct subtypes of MYC;NeuNT tumors match existing subtypes of amplified-HER2, estrogen receptor-negative human tumors by molecular expression, identifying the preclinical utility of this murine model to interrogate subtype-specific differences in amplified-HER2 breast cancer. We show that these subtypes have differential sensitivity to clinical HER2/EGFR-targeted therapeutics, but small-molecule activators of PP2A, the phosphatase that regulates MYC Ser62 phosphorylation, circumvents these subtype-specific differences and ubiquitously suppresses tumor growth, demonstrating the therapeutic utility of this approach in targeting deregulated MYC breast cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Experimentais/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , Receptor ErbB-2/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Receptor ErbB-2/genética
12.
Genes Dev ; 32(21-22): 1398-1419, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366908

RESUMO

The transcription factor MYC (also c-Myc) induces histone modification, chromatin remodeling, and the release of paused RNA polymerase to broadly regulate transcription. MYC is subject to a series of post-translational modifications that affect its stability and oncogenic activity, but how these control MYC's function on the genome is largely unknown. Recent work demonstrates an intimate connection between nuclear compartmentalization and gene regulation. Here, we report that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression. We demonstrate that PIN1-mediated localization of MYC to the nuclear pore regulates MYC target genes responsive to mitogen stimulation that are involved in proliferation and migration pathways. These changes are also present at the chromatin level, with an increase in open regulatory elements in response to stimulation that is PIN1-dependent and associated with MYC chromatin binding. Taken together, our study indicates that post-translational modification of MYC controls its spatial activity to optimally regulate gene expression in response to extrinsic signals in normal and diseased states.


Assuntos
Poro Nuclear/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ativação Transcricional , Animais , Linhagem Celular , Células Cultivadas , Cromatina/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitógenos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-myc/química , Serina/metabolismo , Cicatrização , Fatores de Transcrição de p300-CBP/metabolismo
13.
Nat Commun ; 9(1): 3815, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232459

RESUMO

Intratumoral heterogeneity in cancers arises from genomic instability and epigenomic plasticity and is associated with resistance to cytotoxic and targeted therapies. We show here that cell-state heterogeneity, defined by differentiation-state marker expression, is high in triple-negative and basal-like breast cancer subtypes, and that drug tolerant persister (DTP) cell populations with altered marker expression emerge during treatment with a wide range of pathway-targeted therapeutic compounds. We show that MEK and PI3K/mTOR inhibitor-driven DTP states arise through distinct cell-state transitions rather than by Darwinian selection of preexisting subpopulations, and that these transitions involve dynamic remodeling of open chromatin architecture. Increased activity of many chromatin modifier enzymes, including BRD4, is observed in DTP cells. Co-treatment with the PI3K/mTOR inhibitor BEZ235 and the BET inhibitor JQ1 prevents changes to the open chromatin architecture, inhibits the acquisition of a DTP state, and results in robust cell death in vitro and xenograft regression in vivo.


Assuntos
Neoplasias da Mama/patologia , Diferenciação Celular , Plasticidade Celular , Resistencia a Medicamentos Antineoplásicos , Animais , Antineoplásicos/uso terapêutico , Azepinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Cromatina/metabolismo , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/patologia
14.
Nat Commun ; 8(1): 1728, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170413

RESUMO

Intratumoral phenotypic heterogeneity has been described in many tumor types, where it can contribute to drug resistance and disease recurrence. We analyzed ductal and neuroendocrine markers in pancreatic ductal adenocarcinoma, revealing heterogeneous expression of the neuroendocrine marker Synaptophysin within ductal lesions. Higher percentages of Cytokeratin-Synaptophysin dual positive tumor cells correlate with shortened disease-free survival. We observe similar lineage marker heterogeneity in mouse models of pancreatic ductal adenocarcinoma, where lineage tracing indicates that Cytokeratin-Synaptophysin dual positive cells arise from the exocrine compartment. Mechanistically, MYC binding is enriched at neuroendocrine genes in mouse tumor cells and loss of MYC reduces ductal-neuroendocrine lineage heterogeneity, while deregulated MYC expression in KRAS mutant mice increases this phenotype. Neuroendocrine marker expression is associated with chemoresistance and reducing MYC levels decreases gemcitabine-induced neuroendocrine marker expression and increases chemosensitivity. Altogether, we demonstrate that MYC facilitates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma, contributing to poor survival and chemoresistance.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Antineoplásicos/uso terapêutico , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Feminino , Xenoenxertos , Humanos , Queratinas/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transplante de Neoplasias , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Prognóstico , Sinaptofisina/metabolismo , Gencitabina
15.
Sci Rep ; 7(1): 10227, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860502

RESUMO

The brain's response to radiation exposure is an important concern for patients undergoing cancer therapy and astronauts on long missions in deep space. We assessed whether this response is specific and prolonged and is linked to epigenetic mechanisms. We focused on the response of the hippocampus at early (2-weeks) and late (20-week) time points following whole body proton irradiation. We examined two forms of DNA methylation, cytosine methylation (5mC) and hydroxymethylation (5hmC). Impairments in object recognition, spatial memory retention, and network stability following proton irradiation were observed at the two-week time point and correlated with altered gene expression and 5hmC profiles that mapped to specific gene ontology pathways. Significant overlap was observed between DNA methylation changes at the 2 and 20-week time points demonstrating specificity and retention of changes in response to radiation. Moreover, a novel class of DNA methylation change was observed following an environmental challenge (i.e. space irradiation), characterized by both increased and decreased 5hmC levels along the entire gene body. These changes were mapped to genes encoding neuronal functions including postsynaptic gene ontology categories. Thus, the brain's response to proton irradiation is both specific and prolonged and involves novel remodeling of non-random regions of the epigenome.


Assuntos
Metilação de DNA/efeitos da radiação , Epigenômica/métodos , Hipocampo/efeitos da radiação , Irradiação Corporal Total/métodos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/análise , 5-Metilcitosina/efeitos da radiação , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Redes Reguladoras de Genes/efeitos da radiação , Hipocampo/química , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Camundongos , Prótons/efeitos adversos , Análise de Sequência de RNA , Aprendizagem Espacial/efeitos da radiação , Fatores de Tempo
16.
PLoS One ; 12(8): e0181812, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813430

RESUMO

The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to ß-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic ß-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall ß-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to ß cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs-derived from multiple unrelated donors-into pancreatic ß-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes.


Assuntos
Reprogramação Celular , Vesícula Biliar/citologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Animais , Transdiferenciação Celular , Transplante de Células , Células Cultivadas , Técnicas de Reprogramação Celular , Análise por Conglomerados , Expressão Gênica , Perfilação da Expressão Gênica , Vetores Genéticos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , MicroRNAs/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética , Transgenes
17.
Gastrointest Endosc ; 84(2): 252-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26808815

RESUMO

BACKGROUND AND AIMS: EUS-guided FNA (EUS-FNA) is the primary method used to obtain pancreatic tissue for preoperative diagnosis. Accumulating evidence suggests diagnostic and prognostic information may be obtained by gene-expression profiling of these biopsy specimens. RNA sequencing (RNAseq) is a newer method of gene-expression profiling, but published data are scant on the use of this method on pancreas tissue obtained via EUS-FNA. The aim of this study was to determine whether RNAseq of EUS-FNA biopsy samples of undiagnosed pancreatic masses can reliably discriminate between benign and malignant tissue. METHODS: In this prospective study, consenting adults presented to 2 tertiary care hospitals for EUS of suspected pancreatic mass. Tissue was submitted for RNAseq. The results were compared with cytologic diagnosis, surgical pathology diagnosis, or benign clinical follow-up of at least 1 year. RESULTS: Forty-eight patients with solid pancreatic mass lesions were enrolled. Nine samples were excluded because of inadequate RNA and 3 because of final pathologic diagnosis of neuroendocrine tumor. Data from the first 13 patients were used to construct a linear classifier, and this was tested on the final 23 patients (15 malignant and 8 benign lesions). RNAseq of EUS-FNA biopsy samples distinguishes ductal adenocarcinoma from benign pancreatic solid masses with a sensitivity of .87 (range, .58-.98) and specificity of .75 (range, .35-.96). CONCLUSIONS: This proof-of-principle study suggests RNAseq of EUS-FNA samples can reliably detect adenocarcinoma and may provide a new method to evaluate more diagnostically challenging pancreatic lesions.


Assuntos
Adenocarcinoma/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Pancreáticas/genética , Pancreatite/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Pancreatite/diagnóstico , Pancreatite/patologia , Estudos Prospectivos , Análise de Sequência de RNA
18.
Stem Cell Res ; 15(1): 130-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26046330

RESUMO

Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2(-/-) mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1-p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.


Assuntos
Anilidas/farmacologia , Anemia de Fanconi/patologia , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Sirtuína 1/metabolismo , Tiazóis/farmacologia , Acetaldeído , Anilidas/administração & dosagem , Animais , Contagem de Células Sanguíneas , Proliferação de Células/efeitos dos fármacos , Dieta , Etanol/farmacologia , Anemia de Fanconi/sangue , Deleção de Genes , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Camundongos Transgênicos , Análise de Sequência de RNA , Tiazóis/administração & dosagem , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
19.
Stem Cell Reports ; 4(1): 90-102, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25434823

RESUMO

Androgens are widely used for treating Fanconi anemia (FA) and other human bone marrow failure syndromes, but their mode of action remains incompletely understood. Aged Fancd2(-/-) mice were used to assess the therapeutic efficacy of oxymetholone (OXM) and its mechanism of action. Eighteen-month-old Fancd2(-/-) mice recapitulated key human FA phenotypes, including reduced bone marrow cellularity, red cell macrocytosis, and peripheral pancytopenia. As in humans, chronic OXM treatment significantly improved these hematological parameters and stimulated the proliferation of hematopoietic stem and progenitor cells. RNA-Seq analysis implicated downregulation of osteopontin as an important potential mechanism for the drug's action. Consistent with the increased stem cell proliferation, competitive repopulation assays demonstrated that chronic OXM therapy eventually resulted in stem cell exhaustion. These results expand our knowledge of the regulation of hematopoietic stem cell proliferation and have direct clinical implications for the treatment of bone marrow failure.


Assuntos
Ciclo Celular/efeitos dos fármacos , Anemia de Fanconi/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Osteopontina/genética , Oximetolona/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Contagem de Células Sanguíneas , Medula Óssea/patologia , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/patologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Regulação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Humanos , Camundongos , Camundongos Knockout , Oximetolona/uso terapêutico , Pancitopenia/sangue , Pancitopenia/genética , Pancitopenia/patologia , Análise de Sequência de RNA , Fatores de Tempo
20.
Cell Stem Cell ; 15(5): 605-18, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25312494

RESUMO

Adult liver progenitor cells are biliary-like epithelial cells that emerge only under injury conditions in the periportal region of the liver. They exhibit phenotypes of both hepatocytes and bile ducts. However, their origin and their significance to injury repair remain unclear. Here, we used a chimeric lineage tracing system to demonstrate that hepatocytes contribute to the progenitor pool. RNA-sequencing, ultrastructural analysis, and in vitro progenitor assays revealed that hepatocyte-derived progenitors were distinct from their biliary-derived counterparts. In vivo lineage tracing and serial transplantation assays showed that hepatocyte-derived proliferative ducts retained a memory of their origin and differentiated back into hepatocytes upon cessation of injury. Similarly, human hepatocytes in chimeric mice also gave rise to biliary progenitors in vivo. We conclude that human and mouse hepatocytes can undergo reversible ductal metaplasia in response to injury, expand as ducts, and subsequently contribute to restoration of the hepatocyte mass.


Assuntos
Células-Tronco Adultas/citologia , Hepatócitos/patologia , Fígado/patologia , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/ultraestrutura , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Separação Celular , Microambiente Celular , Células Clonais , Regulação da Expressão Gênica , Ducto Hepático Comum/citologia , Hepatócitos/ultraestrutura , Humanos , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Transcrição SOX9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA