Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Thromb Haemost ; 123(4): 415-426, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36442804

RESUMO

Extracorporeal circulation (ECC) is frequently used in intensive care patients with impaired lung or cardiac function. Despite being a life-saving therapeutic option, ECC is associated with increased risk for both bleeding and thrombosis. The management of bleeding and thromboembolic events in ECC patients is still challenging partly due to the lack of information on the pathophysiological changes in hemostasis and platelet function during the procedure. Using a combination of an ex vivo model for shear stress and a sensitive and easy-to-use laboratory method, we analyzed platelet responsiveness during ECC. After shear stress simulation in an ex vivo closed-loop ECC model, we found a significantly decreased response of α-granules after activation with adenosine diphosphate and thrombin receptor activating peptide (TRAP-6) and CD63 expression after activation with TRAP-6. Mepacrine uptake was also significantly reduced in the ex vivo shear stress model.In the same line, platelets from patients under ECC with venovenous systems and venoarterial systems showed impaired CD62P degranulation after stimulation with ADP and TRAP-6 compared with healthy control on day 1, 6, and 10 after implantation of ECC. However, no correlation between platelet degranulation and the occurrence of bleeding or thromboembolic events was observed.The used whole blood flow cytometry with immediate fixation after drawing introduces a sensitive and easy-to-use method to determine platelet activation status and our data confirm that increased shear stress conditions under ECC can cause impaired degranulation of platelet.


Assuntos
Transtornos Plaquetários , Plaquetas , Humanos , Estudos Prospectivos , Plaquetas/metabolismo , Ativação Plaquetária , Transtornos Plaquetários/etiologia , Circulação Extracorpórea/efeitos adversos , Circulação Extracorpórea/métodos , Difosfato de Adenosina/metabolismo
2.
Blood Adv ; 6(1): 248-258, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34753174

RESUMO

Thromboembolic events are frequently reported in patients infected with the SARS-CoV-2 virus. The exact mechanisms of COVID-19-associated hypercoagulopathy, however, remain elusive. Recently, we observed that platelets (PLTs) from patients with severe COVID-19 infection express high levels of procoagulant markers, which were found to be associated with increased risk for thrombosis. In the current study, we investigated the time course as well as the mechanisms leading to procoagulant PLTs in COVID-19. Our study demonstrates the presence of PLT-reactive IgG antibodies that induce marked changes in PLTs in terms of increased inner-mitochondrial transmembrane potential (Δψ) depolarization, phosphatidylserine (PS) externalization, and P-selectin expression. The IgG-induced procoagulant PLTs and increased thrombus formation were mediated by ligation of PLT Fc-γ RIIA (FcγRIIA). In addition, contents of calcium and cyclic-adenosine-monophosphate (cAMP) in PLTs were identified to play a central role in antibody-induced procoagulant PLT formation. Most importantly, antibody-induced procoagulant events, as well as increased thrombus formation in severe COVID-19, were inhibited by Iloprost, a clinically approved therapeutic agent that increases the intracellular cAMP levels in PLTs. Our data indicate that upregulation of cAMP could be a potential therapeutic target to prevent antibody-mediated coagulopathy in COVID-19 disease.


Assuntos
COVID-19 , Trombose , Cálcio , Humanos , SARS-CoV-2 , Trombose/etiologia , Regulação para Cima
3.
Blood ; 139(11): 1722-1742, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34905596

RESUMO

Platelet ACKR3/CXCR7 surface expression is enhanced and influences prognosis in coronary artery disease (CAD) patients, who exhibit a distinct atherothrombotic platelet lipidome. Current investigation validates the potential of ACKR3/CXCR7 in regulating thromboinflammatory response through its impact on the platelet lipidome. CAD patients with enhanced platelet ACKR3/CXCR7 expression exhibited reduced aggregation. Pharmacological CXCR7 agonist (VUF11207) significantly reduced prothrombotic platelet response in blood from acute coronary syndrome patients ex vivo. CXCR7 agonist administration reduced thrombotic functions and thromboinflammatory plateletleukocyte interactions post-myocardial infarction and arterial injury in vivo. ACKR3/CXCR7 ligation did not affect surface availability of surface receptors, coagulation profile, bleeding time, plasma-dependent thrombin generation (thrombinoscopy), or clot formation (thromboelastography) but counteracted activation-induced phosphatidylserine exposure and procoagulant platelet-assisted thrombin generation. Targeted (micro-UHPLC-ESI-QTrap-MS/MS) and untargeted (UHPLCESI-QTOF-MS/MS) lipidomics analysis revealed that ACKR3/CXCR7 ligation favored generation of antithrombotic lipids (dihomo-γ-linolenic acid [DGLA], 12-hydroxyeicosatrienoic acid [12-HETrE]) over cyclooxygenase-1 (COX-1) or 12-lipoxygenase (12-LOX) metabolized prothrombotic and phospholipase-derived atherogenic lipids in healthy subjects and CAD patients, contrary to antiplatelet therapy. Through 12-HETrE, ACKR3/CXCR7 ligation coordinated with Gαs-coupled prostacyclin receptor to trigger cyclic adenosine monophosphate/protein kinase A-mediated platelet inhibition. ACKR3/CXCR7 ligation reduced generation of lipid agonists and lipid signaling intermediates, which affected calcium mobilization, intracellular signaling, and consequently platelet interaction with physiological matrices and thromboinflammatory secretome. This emphasized its functional dichotomy from prothrombotic CXCR4. Moreover, CXCR7 agonist regulated heparin-induced thrombocytopenia-sera/immunoglobulin G-triggered platelet and neutrophil activation, heparin-induced platelet aggregation, generation of thromboinflammatory lipids, platelet-neutrophil aggregate formation, and thromboinflammatory secretion ex vivo. Therefore, ACKR3/CXCR7 may offer a novel therapeutic strategy in acute/chronic thromboinflammation exaggerated cardiovascular pathologies and CAD.


Assuntos
Receptores CXCR/metabolismo , Trombose , Plaquetas/metabolismo , Humanos , Inflamação/metabolismo , Lipidômica , Lipídeos , Espectrometria de Massas em Tandem , Trombina/metabolismo , Tromboinflamação , Trombose/metabolismo
4.
J Thromb Haemost ; 20(2): 387-398, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34752677

RESUMO

BACKGROUND: Thromboembolic events are frequently reported in patients infected with the SARS-CoV-2. Recently, we observed that platelets from patients with severe COVID-19 infection express procoagulant phenotype. The molecular mechanisms that induce the generation of procoagulant platelets in COVID-19 patients are not completely understood. OBJECTIVES: In this study, we investigated the role of AKT (also known as Protein Kinase B), which is the major downstream effector of PI3K (phosphoinositid-3-kinase) (PI3K/AKT) signaling pathway in platelets from patients with COVID-19. PATIENTS AND METHODS: Platelets, Sera and IgG from COVID-19 patients who were admitted to the intensive care unit (ICU) were analyzed by flow cytometry as well as western blot and adhesion assays. RESULTS: Platelets from COVID-19 patients showed significantly higher levels of phosphorylated AKT, which was correlated with CD62p expression and phosphatidylserine (PS) externalization. In addition, healthy platelets incubated with sera or IgGs from ICU COVID-19 patients induced phosphorylation of PI3K and AKT and were dependent on Fc-gamma-RIIA (FcγRIIA). In contrast, ICU COVID-19 sera mediated generation of procoagulant platelets was not dependent on GPIIb/IIIa. Interestingly, the inhibition of phosphorylation of both proteins AKT and PI3K prevented the generation of procoagulant platelets. CONCLUSIONS: Our study shows that pAKT/AKT signaling pathway is associated with the formation of procoagulant platelets in severe COVID-19 patients without integrin GPIIb/IIIa engagement. The inhibition of PI3K/AKT phosphorylation might represent a promising strategy to reduce the risk for thrombosis in patients with severe COVID-19.


Assuntos
COVID-19 , Proteínas Proto-Oncogênicas c-akt , Plaquetas , Humanos , Fosfatidilinositol 3-Quinases , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , SARS-CoV-2
5.
Sci Rep ; 10(1): 8391, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439941

RESUMO

Loss of function mutations of the chorein-encoding gene VPS13A lead to chorea-acanthocytosis (ChAc), a neurodegenerative disorder with accelerated suicidal neuronal cell death, which could be reversed by lithium. Chorein upregulates the serum and glucocorticoid inducible kinase SGK1. Targets of SGK1 include the Na+/K+-ATPase, a pump required for cell survival. To explore whether chorein-deficiency affects Na+/K+ pump capacity, cortical neurons were differentiated from iPSCs generated from fibroblasts of ChAc patients and healthy volunteers. Na+/K+ pump capacity was estimated from K+-induced whole cell outward current (pump capacity). As a result, the pump capacity was completely abolished in the presence of Na+/K+ pump-inhibitor ouabain (100 µM), was significantly smaller in ChAc neurons than in control neurons, and was significantly increased in ChAc neurons by lithium treatment (24 hours 2 mM). The effect of lithium was reversed by SGK1-inhibitor GSK650394 (24 h 10 µM). Transmembrane potential (Vm) was significantly less negative in ChAc neurons than in control neurons, and was significantly increased in ChAc neurons by lithium treatment (2 mM, 24 hours). The effect of lithium on Vm was virtually abrogated by ouabain. Na+/K+ α1-subunit transcript levels and protein abundance were significantly lower in ChAc neurons than in control neurons, an effect reversed by lithium treatment (2 mM, 24 hours). In conclusion, consequences of chorein deficiency in ChAc include impaired Na+/K+ pump capacity.


Assuntos
Membrana Celular/patologia , Neuroacantocitose/metabolismo , Neuroacantocitose/patologia , Neurônios/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Benzoatos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Estudos de Casos e Controles , Diferenciação Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Células-Tronco Pluripotentes Induzidas/citologia , Lítio/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Vox Sang ; 115(1): 94-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31709567

RESUMO

BACKGROUND AND OBJECTIVES: Platelet transfusion is a standard medical therapy used to treat several bleeding disorders. However, a critical drawback is the dependency on donor-derived platelets, which leads to concerns like insufficient availability and immunological complications. In vitro platelet production from hematopoietic progenitor cells (CD34) may represent a reasonable solution. MATERIALS AND METHODS: CD34+ cells were isolated from either buffy coat or peripheral blood and compared in terms of platelet production in vitro. The number and the quality of magnetically isolated CD34+ cells and their capability to differentiate into mature megakaryocytes were investigated using flow cytometry. Additionally, the functionality of megakaryocytes in term of in vitro platelet production was tested. RESULTS: Similar purity and quantity of CD34+ cells was found after their isolation from both cell sources. In contrast, after 6 days of culture, enhanced number of CD34+ cells isolated from buffy coat compared with peripheral blood was observed (5·3 x 106 vs. 3·0 x 106, respectively). Interestingly, despite a comparable nuclear maturation phenotype, the yield of platelets released from buffy coat-derived megakaryocytes was significantly higher than from peripheral blood cells (platelet yield pro MK: 7·2 vs. 2·7, respectively). Importantly, platelets produced from buffy coat-derived cells could be activated by agonists. CONCLUSION: Haematopoietic progenitor cells isolated from buffy coat have increased yield of platelets released from mature megakaryocytes and enhanced in vitro functionality, compared with peripheral blood-derived cells. Our study, suggests that buffy coat, obtained during blood donation processing, might be a promising source of megakaryocytes for in vitro platelet production.


Assuntos
Buffy Coat/citologia , Doadores de Sangue , Plaquetas , Células-Tronco Hematopoéticas/fisiologia , Megacariócitos , Citometria de Fluxo , Hematopoese , Humanos
7.
Front Immunol ; 10: 1737, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417547

RESUMO

The gut microbiota influences several biological functions including immune responses. Inflammatory bowel disease is favorably influenced by consumption of several dietary natural plant products such as pomegranate, walnuts, and berries containing polyphenolic compounds such as ellagitannins and ellagic acid. The gut microbiota metabolizes ellagic acid resulting in the formation of bioactive urolithins A, B, C, and D. Urolithin A (UA) is the most active and effective gut metabolite and acts as a potent anti-inflammatory and anti-oxidant agent. However, whether gut metabolite UA affects the function of immune cells remains incompletely understood. T cell proliferation is stimulated by store operated Ca2+ entry (SOCE) resulting from stimulation of Orai1 by STIM1/STIM2. We show here that treatment of murine CD4+ T cells with UA (10 µM, 3 days) significantly blunted SOCE in CD4+ T cells, an effect paralleled by significant downregulation of Orai1 and STIM1/2 transcript levels and protein abundance. UA treatment further increased miR-10a-5p abundance in CD4+ T cells in a dose dependent fashion. Overexpression of miR-10a-5p significantly decreased STIM1/2 and Orai1 mRNA and protein levels as well as SOCE in CD4+ T cells. UA further decreased CD4+ T cell proliferation. Thus, the gut bacterial metabolite UA increases miR-10a-5p levels thereby downregulating Orai1/STIM1/STIM2 expression, store operated Ca2+ entry, and proliferation of murine CD4+ T cells.


Assuntos
Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Sinalização do Cálcio/imunologia , Cálcio/imunologia , Cumarínicos/imunologia , Microbioma Gastrointestinal/imunologia , MicroRNAs/imunologia , Animais , Proliferação de Células , Feminino , Regulação da Expressão Gênica/imunologia , Masculino , Camundongos , Proteína ORAI1/imunologia , Molécula 1 de Interação Estromal/imunologia , Molécula 2 de Interação Estromal/imunologia
8.
Thromb Res ; 180: 55-61, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31220752

RESUMO

BACKGROUND: Heparin-induced thrombocytopenia (HIT) is caused by platelet-activating antibodies that recognize platelet factor 4/heparin (PF4/hep)-complexes. The in vitro demonstration of PF4/hep antibodies using functional assays is essential for an optimal management of patients suspected to have HIT. However, conventional functional assays are technically challenging and limited to specialized laboratories. In contrast, flow cytometers are commonly used in routine laboratories. The aim of this study is to investigate the performance characteristics of a commercially available, flow cytometer based assay in the diagnosis of HIT. STUDY DESIGN: Sera of consecutive patients with suspected HIT were investigated using the Emo-test HIT Confirm® assay and compared to the standard method consisting of an IgG-specific enzyme immunoassay (EIA) for anti-PF4/hep antibodies and the heparin induced platelet aggregation (HIPA) test. RESULTS: 390 sera were included in the study, 164 sera tested IgG EIA-positive, of which 33 also tested HIPA-positive. No HIPA-positive samples were EIA-negative. In the Emo-test HIT Confirm® assay, 112 sera revealed positive results (%Hepla > 13); however, 51 (45.5%) were EIA-negative. Of the 33 HIPA-positive/EIA-positive HIT sera, 23 tested positive in the Emo-test HIT Confirm® assay, 2 gave ambiguous results, and 8 sera yielded false-negative results. Accordingly, the HIT Confirm® assay showed a sensitivity of 69.7% with a slightly better specificity of 75.4% compared to the EIA (sensitivity 100%, specificity 63.3%). An increase in diagnostic specificity for HIT to 85% was found when positive results were obtained in both the Emo-test HIT Confirm® assay and EIA. CONCLUSION: The Emo-Test HIT Confirm® assay may improve the specificity of laboratory investigations of HIT. However, the assay can only be recommended in combination with an immunoassay due to the high rate of false negativity. Our observation indicates a need to establish external quality assessment for functional assays to avoid such clinically relevant pitfalls.


Assuntos
Anticoagulantes/efeitos adversos , Heparina/efeitos adversos , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico , Idoso , Reações Falso-Negativas , Feminino , Citometria de Fluxo/métodos , Humanos , Técnicas Imunoenzimáticas , Masculino , Pessoa de Meia-Idade , Agregação Plaquetária/efeitos dos fármacos , Plasma Rico em Plaquetas/efeitos dos fármacos
9.
J Mol Cell Cardiol ; 131: 12-19, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30998980

RESUMO

The leading cause of genetic dilated cardiomyopathy (DCM) is due to mutations in the TTN gene, impacting approximately 15-20% of familial and 18% of sporadic DCM cases. Currently, there is potential for a personalized RNA-based therapeutic approach in titin-based DCM, utilizing antisense oligonucleotide (AON) mediated exon-skipping, which attempts to reframe mutated titin transcripts, resulting in shortened, functional protein. However, the TTN gene is massive with 363 exons; each newly identified TTN exon mutation provides a challenge to address when considering the potential application of AON mediated exon skipping. In the initial phase of this strategy, the mutated TTN exon requires specific AON design and evaluation to assess the exon skipping effectiveness for subsequent experiments. Here, we present a detailed protocol to effectively assemble and evaluate AONs for efficient exon-skipping in targeted TTN exons. We chose a previously identified TTN 1-bp deletion mutation in exon 335 as an exemplary target exon, which causes a frameshift mutation leading to truncated A-band titin in DCM. We designed two specific AONs to mask the Ttn exon 335 and confirmed successfully mediated exon skipping without disrupting the Ttn reading frame. In addition, we evaluated and confirmed AON-treated HL-1 cells show maintained store-operated calcium entry, fractional shortening as well as preserved sarcomeric formation in comparison to control samples, indicating the treated cardiomyocytes retain adequate, essential cell function and structure, proving the treated cells can compensate for the loss of exon 335. These results indicate our method offers the first systematic protocol in designing and evaluating AONs specifically for mutated TTN target exons, expanding the framework of future advancements in the therapeutic potential of antisense-mediated exon skipping in titin-based DCM.


Assuntos
Cardiomiopatia Dilatada/genética , Conectina/genética , Éxons/genética , Mutação da Fase de Leitura/genética , Oligonucleotídeos Antissenso/genética , Deleção de Sequência/genética , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Sarcômeros/genética
10.
Biochem Biophys Res Commun ; 512(3): 467-472, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30902388

RESUMO

Placental growth factor (PlGF) is produced by tumor cells and stimulates tumor growth and metastasis in part by upregulation of hypoxia inducible factor HIF1α. Orchestration of tumor cell proliferation and migration involves oscillations of cytosolic Ca2+ activity ([Ca2+]i). The [Ca2+]i oscillations could be accomplished by triggering of intracellular Ca2+ release followed by store-operated Ca2+-entry (SOCE). Mechanisms accomplishing SOCE include the pore-forming ion channel unit Orai1 and its regulator STIM1. The present study explored whether PlGF influences the expression of Orai1 and STIM1, as well as SOCE and whether this effect impacts on HIF1α expression. To this end, ovary carcinoma cells were cultured for 24 h without and with PlGF (10 ng/ml). Orai1, STIM1 and HIF1α transcript levels were quantified utilizing RT-PCR and Orai1, STIM1 and HIF1α protein levels by Western blotting. [Ca2+]i was estimated from Fura-2-fluorescence and SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with extracellular Ca2+ removal and sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM). As a result, exposure of ovary carcinoma cells to PlGF was followed by a significant increase of Orai1 as well as STIM1 transcript and protein levels. PlGF significantly increased store-operated Ca2+-entry following re-addition of extracellular Ca2+, an effect virtually abrogated by Orai1 inhibitor MRS1845 (10 µM). PlGF further increased HIF1α transcript and protein levels, an effect again significantly blunted by MRS1845 (10 µM). In conclusion, PlGF upregulates expression of both, Orai1 and STIM1 thus enhancing store-operated Ca2+-entry with subsequent upregulation of HIF1α.


Assuntos
Cálcio/metabolismo , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Neoplasias Ovarianas/genética , Fator de Crescimento Placentário/metabolismo , Molécula 1 de Interação Estromal/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/metabolismo , Regulação para Cima
11.
Cell Physiol Biochem ; 51(1): 278-289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30453283

RESUMO

BACKGROUND/AIMS: The neurodegenerative disease Chorea-Acanthocytosis (ChAc) is caused by loss-of-function-mutations of the chorein-encoding gene VPS13A. In ChAc neurons transcript levels and protein abundance of Ca2+ release activated channel moiety (CRAC) Orai1 as well as its regulator STIM1/2 are decreased, resulting in blunted store operated Ca2+-entry (SOCE) and enhanced suicidal cell death. SOCE is up-regulated and cell death decreased by lithium. The effects of lithium are paralleled by upregulation of serum & glucocorticoid inducible kinase SGK1 and abrogated by pharmacological SGK1 inhibition. In other cell types SGK1 has been shown to be partially effective by upregulation of NFκB, a transcription factor stimulating the expression of Orai1 and STIM. The present study explored whether pharmacological inhibition of NFκB interferes with Orai1/STIM1/2 expression and SOCE and their upregulation by lithium in ChAc neurons. METHODS: Cortical neurons were differentiated from induced pluripotent stem cells generated from fibroblasts of ChAc patients and healthy volunteers. Orai1 and STIM1 transcript levels and protein abundance were estimated from qRT-PCR and Western blotting, respectively, cytosolic Ca2+-activity ([Ca2+]i) from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarco-endoplasmatic Ca2+-ATPase inhibitor thapsigargin (1µM), as well as CRAC current utilizing whole cell patch clamp recording. RESULTS: Orai1 and STIM1 transcript levels and protein abundance as well as SOCE and CRAC current were significantly enhanced by lithium treatment (2 mM, 24 hours). These effects were reversed by NFκB inhibitor wogonin (50 µM). CONCLUSION: The stimulation of expression and function of Orai1/STIM1/2 by lithium in ChAc neurons are disrupted by pharmacological NFκB inhibition.


Assuntos
Cálcio/metabolismo , Flavanonas/farmacologia , Expressão Gênica/efeitos dos fármacos , Lítio/farmacologia , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Potenciais da Membrana/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas de Neoplasias/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína ORAI1/genética , Técnicas de Patch-Clamp , Molécula 1 de Interação Estromal/genética , Tapsigargina/farmacologia
12.
Apoptosis ; 23(11-12): 641-650, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30238335

RESUMO

The transcription factor p53 suppresses tumor growth by inducing nucleated cell apoptosis and cycle arrest. Because of its influence on primitive erythroid cell differentiation and survival, p53 is an important determinant of erythropoiesis. However, the impact of p53 on the fate of erythrocytes, cells lacking nucleus and mitochondria, during their post-maturation phase in the circulation remained elusive. Erythrocyte survival may be compromised by suicidal erythrocyte death or eryptosis, which is hallmarked by phosphatidylserine translocation and stimulated by increase of cytosolic Ca2+ concentration. Here, we comparatively examined erythrocyte homeostasis in p53-mutant mice (Trp53tm1Tyj/J) and in corresponding WT mice (C57BL/6J) by analyzing eryptosis and erythropoiesis. To this end, spontaneous cell membrane phosphatidylserine exposure and cytosolic Ca2+ concentration were higher in erythrocytes drawn from Trp53tm1Tyj/J mice than from WT mice. Eryptosis induced by glucose deprivation, a pathophysiological cell stressor, was slightly, but significantly more prominent in erythrocytes drawn from Trp53tm1Tyj/J mice as compared to WT mice. The loss of erythrocytes by eryptosis was fully compensated by enhanced erythropoiesis in Trp53tm1Tyj/J mice, as reflected by increased reticulocytosis and abundance of erythroid precursor cells in the bone marrow. Accordingly, erythrocyte number, packed cell volume and hemoglobin were similar in Trp53tm1Tyj/J and WT mice. Taken together, functional p53 deficiency enhances the turnover of circulating erythrocytes by parallel increase of eryptosis and stimulated compensatory erythropoiesis.


Assuntos
Envelhecimento Eritrocítico/genética , Eritrócitos/fisiologia , Proteína Supressora de Tumor p53/genética , Animais , Contagem de Células Sanguíneas , Cálcio/metabolismo , Eriptose/fisiologia , Eritrócitos/metabolismo , Eritrócitos/patologia , Eritropoese/fisiologia , Genótipo , Glucose/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilserinas/metabolismo , Proteína Supressora de Tumor p53/metabolismo
13.
Physiol Rep ; 6(17): e13841, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30187671

RESUMO

Gαi2 , a heterotrimeric G-protein subunit, regulates various cell functions including ion channel activity, cell differentiation, proliferation and apoptosis. Platelet-expressed Gαi2 is decisive for the extent of tissue injury following ischemia/reperfusion. However, it is not known whether Gαi2 plays a role in the regulation of platelet apoptosis, which is characterized by caspase activation, cell shrinkage and cell membrane scrambling with phosphatidylserine (PS) translocation to the platelet surface. Stimulators of platelet apoptosis include thrombin and collagen-related peptide (CoRP), which are further known to enhance degranulation and activation of αIIb ß3-integrin and caspases. Using FACS analysis, we examined the impact of agonist treatment on activation and apoptosis in platelets drawn from mice lacking Gαi2 and their wild-type (WT) littermates. As a result, treatment with either thrombin (0.01 U/mL) or CoRP (2 µg/mL or 5 µg/mL) significantly upregulated PS-exposure and significantly decreased forward scatter, reflecting cell size, in both genotypes. Exposure to CoRP triggered a significant increase in active caspase 3, ceramide formation, surface P-selectin, and αIIb ß3-integrin activation. These molecular alterations were significantly less pronounced in Gαi2 -deficient platelets as compared to WT platelets. In conclusion, our data highlight a previously unreported role of Gαi2 signaling in governing platelet activation and apoptosis.


Assuntos
Apoptose , Plaquetas/metabolismo , Degranulação Celular , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Proteínas de Transporte/farmacologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia , Trombina/farmacologia
14.
Cell Calcium ; 74: 29-34, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29807219

RESUMO

The pore forming Ca2+ release activated Ca2+ channel (CRAC) isoforms ORAI1-3 and their regulators STIM1,2 accomplish store operated Ca2+ entry (SOCE). Activation of SOCE may lead to cytosolic Ca2+ oscillations, which in turn support cell proliferation and cell survival. ORAI/STIM and thus SOCE are upregulated by the serum and glucocorticoid inducible kinase SGK1, a kinase under powerful genomic regulation and activated by phosphorylation via the phosphoinositol-3-phosphate pathway. SGK1 enhances ORAI1 abundance partially by phosphorylation of Nedd4-2, an ubiquitin ligase priming the channel protein for degradation. The SGK1-phosphorylated Nedd4-2 binds to the protein 14-3-3 and is thus unable to ubiquinate ORAI1. SGK1 further increases the ORAI1 and STIM1 protein abundance by activating nuclear factor kappa B (NF-κB), a transcription factor upregulating the expression of STIM1 and ORAI1. SGK1-sensitive upregulation of ORAI/STIM and thus SOCE is triggered by a wide variety of hormones and growth factors, as well as several cell stressors including ischemia, radiation, and cell shrinkage. SGK1 dependent upregulation of ORAI/STIM confers survival of tumor cells and thus impacts on growth and therapy resistance of cancer. On the other hand, SGK1-dependent upregulation of ORAI1 and STIM1 may support survival of neurons and impairment of SGK1-dependent ORAI/STIM activity may foster neurodegeneration. Clearly, further experimental effort is needed to define the mechanisms linking SGK1-dependent upregulation of ORAI1 and STIM1 to cell survival and to define the impact of SGK1-dependent upregulation of ORAI1 and STIM1 on malignancy and neurodegenerative disease.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Sobrevivência Celular/fisiologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
15.
Neurosignals ; 25(1): 117-126, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29179176

RESUMO

Chorea-acanthocytosis (ChAc), a neurodegenerative disease, results from loss-of-function-mutations of the chorein-encoding gene VPS13A. Affected patients suffer from a progressive movement disorder including chorea, parkinsonism, dystonia, tongue protrusion, dysarthria, dysphagia, tongue and lip biting, gait impairment, progressive distal muscle wasting, weakness, epileptic seizures, cognitive impairment, and behavioral changes. Those pathologies may be paralleled by erythrocyte acanthocytosis. Chorein supports activation of phosphoinositide-3-kinase (PI3K)-p85-subunit with subsequent up-regulation of ras-related C3 botulinum toxin substrate 1 (Rac1) activity, p21 protein-activated kinase 1 (PAK1) phosphorylation, and activation of several tyrosine kinases. Chorein sensitive PI3K signaling further leads to stimulation of the serum and glucocorticoid inducible kinase SGK1, which in turn upregulates ORAI1, a Ca2+-channel accomplishing store operated Ca2+-entry (SOCE). The signaling participates in the regulation of cytoskeletal architecture on the one side and cell survival on the other. Compromised cytoskeletal architecture has been shown in chorein deficient erythrocytes, fibroblasts and endothelial cells. Impaired degranulation was observed in chorein deficient PC12 cells and in platelets from ChAc patients. Similarly, decreased ORAI1 expression and SOCE as well as compromised cell survival were seen in fibroblasts and neurons isolated from ChAc patients. ORAI1 expression, SOCE and cell survival can be restored by lithium treatment, an effect disrupted by pharmacological inhibition of SGK1 or ORAI1. Chorein, SGK1, ORAI1 and SOCE further confer survival of tumor cells. In conclusion, much has been learned about the function of chorein and the molecular pathophysiology of chorea-acanthocytosis. Most importantly, a treatment halting or delaying the clinical course of this devastating disease may become available. A controlled clinical study is warranted, in order to explore whether the in vitro observations indeed reflect the in vivo pathology of the disease.


Assuntos
Eritrócitos/metabolismo , Neuroacantocitose/metabolismo , Neurônios/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Autofagia/fisiologia , Citoesqueleto/metabolismo , Humanos
16.
Oncotarget ; 8(52): 89500-89514, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29163766

RESUMO

CD4+ T cells are key elements in immune responses and inflammation. Activation of T cell receptors in CD4+ T cells triggers cytosolic Ca2+ release with subsequent store operated Ca2+ entry (SOCE), which is accomplished by the pore forming Ca2+ release activated Ca2+ (CRAC) channel Orai1 and its regulator stromal cell-interaction molecule 2 (STIM2). Green tea polyphenol epigallocatechin-3-gallate (EGCG) acts as a potent anti-inflammatory and anti-oxidant agent for various types of cells including immune cells. However, how post-transcriptional gene regulators such as miRNAs are involved in the regulation of Ca2+ influx into murine CD4+ T cells and human Jurkat T cells through EGCG is not defined. EGCG treatment of murine CD4+ T cells significantly down-regulated the expression of STIM2 and Orai1 both at mRNA and protein levels. Furthermore, EGCG significantly decreased SOCE in both murine and human T cells. EGCG treatment increased miRNA-15b (miR-15b) abundance in both murine and human T cells. Bioinformatics analysis reveals that miR-15b, which has a STIM2 binding site, is involved in the down-regulation of SOCE. Overexpression of miR-15b significantly decreased the mRNA and protein expression of STIM2 and Orai1 in murine T cells. Treatment of Jurkat T cells with 10 µM EGCG further decreased mTOR and PTEN protein levels. EGCG decreased mitochondrial membrane potential (MMP) in both human and murine T cells. In conclusion, the observations suggest that EGCG inhibits the Ca2+ entry into murine and human T cells, an effect accomplished at least in part by up-regulation of miR-15b.

17.
Cell Physiol Biochem ; 42(5): 2066-2077, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28803243

RESUMO

BACKGROUND: The widely expressed protein chorein fosters activation of the phosphoinositide 3 kinase (PI3K) pathway thus supporting cell survival. Loss of function mutations of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A) causes chorea-acanthocytosis (ChAc), a neurodegenerative disorder paralleled by deformations of erythrocytes. In mice, genetic knockout of chorein leads to enhanced neuronal apoptosis. PI3K dependent signalling upregulates Orai1, a pore forming channel protein accomplishing store operated Ca2+ entry (SOCE). Increased Orai1 expression and SOCE have been shown to confer survival of tumor cells. SOCE could be up-regulated by lithium. The present study explored, whether SOCE and/or apoptosis are altered in ChAc fibroblasts and could be modified by lithium treatment. METHODS: Fibroblasts were isolated from ChAc patients and age-matched healthy volunteers. Cytosolic Ca2+ activity ([Ca2+]i) was estimated from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM), and apoptosis from annexin-V/propidium iodide staining quantified in flow cytometry. RESULTS: SOCE was significantly smaller in ChAc fibroblasts than in control fibroblasts. Lithium (2 mM, 24 hours) significantly increased and Orai1 blocker 2-Aminoethoxydiphenyl Borate (2-APB, 50 µM, 24 hours) significantly decreased SOCE. Annexin-V-binding and propidium iodide staining were significantly higher in ChAc fibroblasts than in control fibroblasts. In ChAc fibroblasts annexin-V-binding and propidium iodide staining were significantly decreased by lithium treatment, significantly increased by 2-APB and virtually lithium insensitive in the presence of 2-APB. CONCLUSIONS: In ChAc fibroblasts, downregulation of SOCE contributes to enhanced susceptibility to apoptosis. Both, decreased SOCE and enhanced apoptosis of ChAc fibroblasts can be reversed by lithium treatment.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Fibroblastos/efeitos dos fármacos , Lítio/farmacologia , Neuroacantocitose/patologia , Apoptose/efeitos dos fármacos , Compostos de Boro/farmacologia , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/metabolismo , Estudos de Casos e Controles , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Fura-2/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Microscopia de Fluorescência , Neuroacantocitose/metabolismo
18.
Sci Rep ; 7(1): 6457, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743945

RESUMO

Chorea-Acanthocytosis (ChAc), a neurodegenerative disorder, results from loss-of-function-mutations of chorein-encoding gene VPS13A. In tumour cells chorein up-regulates ORAI1, a Ca2+-channel accomplishing store operated Ca2+-entry (SOCE) upon stimulation by STIM1. Furthermore SOCE could be up-regulated by lithium. The present study explored whether SOCE impacts on neuron apoptosis. Cortical neurons were differentiated from induced pluripotent stem cells generated from fibroblasts of ChAc patients and healthy volunteers. ORAI1 and STIM1 transcript levels and protein abundance were estimated from qRT-PCR and Western blotting, respectively, cytosolic Ca2+-activity ([Ca2+]i) from Fura-2-fluorescence, as well as apoptosis from annexin-V-binding and propidium-iodide uptake determined by flow cytometry. As a result, ORAI1 and STIM1 transcript levels and protein abundance and SOCE were significantly smaller and the percentage apoptotic cells significantly higher in ChAc neurons than in control neurons. Lithium treatment (2 mM, 24 hours) increased significantly ORAI1 and STIM1 transcript levels and protein abundance, an effect reversed by inhibition of Serum & Glucocorticoid inducible Kinase 1. ORAI1 blocker 2-APB (50 µM, 24 hours) significantly decreased SOCE, markedly increased apoptosis and abrogated the anti-apoptotic effect of lithium. In conclusion, enhanced neuronal apoptosis in ChAc at least partially results from decreased ORAI1 expression and SOCE, which could be reversed by lithium treatment.


Assuntos
Cálcio/metabolismo , Lítio/farmacologia , Neuroacantocitose/patologia , Neurônios/patologia , Proteína ORAI1/metabolismo , Apoptose/efeitos dos fármacos , Benzoatos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Morte Celular , Diferenciação Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Voluntários Saudáveis , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neuroacantocitose/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína ORAI1/genética , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
19.
Cell Physiol Biochem ; 42(4): 1366-1376, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704809

RESUMO

BACKGROUND/AIMS: Istaroxime is a validated inotropic Na+/K+ ATPase inhibitor currently in development for the treatment of various cardiac conditions. Recent findings established that this steroidal drug exhibits potent apoptotic responses in prostate tumors in vitro and in vivo, by affecting key signaling orchestrating proliferation and apoptosis, such as c-Myc and caspase 3, Rho GTPases and actin cytoskeleton dynamics. In the present study we examined whether istaroxime is affecting cell motility and analyzed the underlying mechanism in prostate tumor cells. METHODS: Migration was assessed by transwell and wound healing assays, Orai1 and Stim1 abundance by RT-PCR and confocal immunofluorescence microscopy, Fura-2 fluorescence was utilized to determine intracellular Ca2+ and Western blotting for FAK/pFAK measurements. RESULTS: We observed strong inhibition of cell migration in istaroxime treated DU-145 prostate cancer cells. Istaroxime further decreased Orai1 and Stim1 transcript levels and downregulated Orai1 protein expression. Moreover, SOCE was significantly decreased upon istaroxime treatment. Furthermore, istaroxime strikingly diminished phosphorylated FAK levels. Interestingly, the efficacy of istaroxime on the inhibition of DU-145 cell migration was further enhanced by blocking Orai1 with 2-APB and FAK with the specific inhibitor PF-00562271. These results provide strong evidence that istaroxime prevents cell migration and motility of DU-145 prostate tumor cells, an effect at least partially attributed to Orai1 downregulation and FAK de-activation. CONCLUSION: Collectively our results indicate that this enzyme inhibitor, besides its pro-apoptotic action, affects motility of cancer cells, supporting its potential role as a strong candidate for further clinical cancer drug development.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Etiocolanolona/análogos & derivados , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Proteína ORAI1/genética , Bloqueadores dos Canais de Sódio/farmacologia , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Etiocolanolona/farmacologia , Corantes Fluorescentes/química , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Fura-2/química , Humanos , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI1/metabolismo , Fosforilação/efeitos dos fármacos , Próstata/efeitos dos fármacos , Próstata/metabolismo , Próstata/patologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais , Molécula 1 de Interação Estromal/antagonistas & inibidores , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Sulfonamidas/farmacologia
20.
Cell Physiol Biochem ; 42(3): 1240-1251, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28683437

RESUMO

BACKGROUND/AIMS: Alterations of cytosolic Ca2+-activity ([Ca2+]i) are decisive in the regulation of tumor cell proliferation, migration and survival. Transport processes participating in the regulation of [Ca2+]i include Ca2+ extrusion through K+-independent (NCX) and/or K+-dependent (NCKX) Na+/Ca2+-exchangers. The present study thus explored whether medulloblastoma cells express Na+/Ca2+-exchangers, whether expression differs between therapy sensitive D283 and therapy resistant UW228-3 medulloblastoma cells, and whether Na+/Ca2+-exchangers participate in the regulation of cell survival. METHODS: In therapy sensitive D283 and therapy resistant UW228-3 medulloblastoma cells transcript levels were estimated by RT-PCR, protein abundance by Western blotting, cytosolic Ca2+-activity ([Ca2+]i) from Fura-2-fluorescence, Na+/ Ca2+-exchanger activity from the increase of [Ca2+]i (Δ[Ca2+]i) and from whole cell current (Ica) following abrupt replacement of Na+ containing (130 mM) and Ca2+ free by Na+ free and Ca2+ containing (2 mM) extracellular perfusate as well as cell death from PI -staining and annexin-V binding in flow cytometry. RESULTS: The transcript levels of NCX3, NCKX2, and NCKX5, protein abundance of NCX3, slope and peak of Δ[Ca2+]i as well as Ica were significantly lower in therapy sensitive D283 than in therapy resistant UW228-3 medulloblastoma cells. The Na+/Ca2+-exchanger inhibitor KB-R7943 (10 µM) significantly blunted Δ[Ca2+]i, and augmented the ionizing radiation-induced apoptosis but did not significantly modify clonogenicity of medulloblastoma cells. Apoptosis was further enhanced by NCX3 silencing. CONCLUSIONS: Na+/Ca2+-exchanger activity significantly counteracts apoptosis but does not significantly affect clonogenicity after radiation of medulloblastoma cells.


Assuntos
Neoplasias Cerebelares/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/tratamento farmacológico , Trocador de Sódio e Cálcio/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Humanos , Meduloblastoma/genética , Técnicas de Patch-Clamp , Isoformas de Proteínas/metabolismo , Sódio/metabolismo , Trocador de Sódio e Cálcio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA