Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(5): 1793-1807, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38648355

RESUMO

Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.


Assuntos
Cardiomiopatia Chagásica , Fenofibrato , Macrófagos , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Animais , Camundongos , Cardiomiopatia Chagásica/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Miocárdio/patologia , Masculino , Trypanosoma cruzi/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Miocardite/tratamento farmacológico , Miocardite/parasitologia
2.
ACS Infect Dis ; 9(2): 213-220, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36661566

RESUMO

Chronic cardiomyopathy is one of the most relevant outcomes of Chagas disease associated with parasite persistence and exacerbated inflammatory response. Fenofibrate, a third generation fibric acid derivative and peroxisome proliferator-activated receptor-α ligand, is involved in the regulation of inflammatory response. However, the participation of macrophages in this scenario has not been elucidated. Here we show, for the first time, that macrophages play a fundamental role in the fenofibrate-mediated modulation of heart pro-inflammatory response and fibrosis caused by the infection with Trypanosoma cruzi. Furthermore, macrophages are required for fenofibrate to improve the loss of ventricular function and this restoration correlates with an anti-inflammatory microenvironment. Understanding the contributions of macrophages to the healing properties of fenofibrate reinforces its potential use as a therapeutic drug, with the aim of helping to solve a public health problem, such as chronic Chagas disease.


Assuntos
Cardiomiopatias , Cardiomiopatia Chagásica , Doença de Chagas , Fenofibrato , Humanos , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/complicações , Cardiomiopatia Chagásica/parasitologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/complicações , Macrófagos
3.
Mol Immunol ; 125: 104-114, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659595

RESUMO

Leishmania are obligate protozoan parasites responsible for substantial public health problems in tropical and subtropical regions around the world, with L. braziliensis being one of the causative agents of American Tegumentary Leishmaniasis. Macrophages, fundamental cells in the innate inflammatory response against Leishmania, constitute a heterogeneous group with multiple activation phenotypes and functions. The outcome of this infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. The importance of lipids, the major components of cell membranes, goes beyond their basic structural functions. Lipid bioactive molecules have been described in Leishmania spp., and in the recent years the knowledge about the biological relevance of lipids in particular and their relationship with the immune response is expanding. The present work analyzes the biological effects of L. braziliensis lipids from lysed promastigotes (PRO) to mimic rapid modulatory processes that could occur in the initial steps of infection or the effects of lipids from lysed and incubated promastigotes (PROinc), simulating the parasite lipid degradation processes triggered after parasite lysis that might occur in the mammalian host. To perform these studies, lipid profiles of PRO and PROinc were compared with lipids from amastigotes under similar conditions (AMA and AMAinc), and the effect of these lipid extracts were analyzed on the induction of an inflammatory response in murine peritoneal macrophages: LB induction, COX-2, iNOS and Arginase expression, TNF-α, IL-10 and NO production, Arginase activity and M1/M2 markers mRNA induction.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania braziliensis/imunologia , Leishmaniose/imunologia , Lipídeos/imunologia , Ativação de Macrófagos/imunologia , Animais , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C
4.
Front Immunol ; 10: 2955, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993046

RESUMO

Chagas disease is caused by Trypanosoma cruzi infection and represents an important public health concern in Latin America. Macrophages are one of the main infiltrating leukocytes in response to infection. Parasite persistence could trigger a sustained activation of these cells, contributing to the damage observed in this pathology, particularly in the heart. HP24, a pyridinecarboxylic acid derivative, is a new PPARγ ligand that exerts anti-inflammatory and pro-angiogenic effects. The aim of this work was to deepen the study of the mechanisms involved in the pro-angiogenic and anti-inflammatory effects of HP24 in T. cruzi-infected macrophages, which have not yet been elucidated. We show for the first time that HP24 increases expression of VEGF-A and eNOS through PI3K/AKT/mTOR and PPARγ pathways and that HP24 inhibits iNOS expression and NO release, a pro-inflammatory mediator, through PPARγ-dependent mechanisms. Furthermore, this study shows that HP24 modulates H2O2 production in a PPARγ-dependent manner. It is also demonstrated that this new PPARγ ligand inhibits the NF-κB pathway. HP24 inhibits IKK phosphorylation and IκB-α degradation, as well as p65 translocation to the nucleus in a PPARγ-dependent manner. In Chagas disease, both the sustained increment in pro-inflammatory mediators and microvascular abnormalities are crucial aspects for the generation of cardiac damage. Elucidating the mechanism of action of new PPARγ ligands is highly attractive, given the fact that it can be used as an adjuvant therapy, particularly in the case of Chagas disease in which inflammation and tissue remodeling play an important role in the pathophysiology of this disease.


Assuntos
Indutores da Angiogênese/imunologia , Antiprotozoários/administração & dosagem , Doença de Chagas/imunologia , Ácidos Isonicotínicos/administração & dosagem , Macrófagos/imunologia , Espécies Reativas de Nitrogênio/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Anti-Inflamatórios/administração & dosagem , Antiprotozoários/química , Doença de Chagas/genética , Doença de Chagas/parasitologia , Humanos , Peróxido de Hidrogênio/imunologia , Ácidos Isonicotínicos/química , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/imunologia , PPAR gama/genética , PPAR gama/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia
5.
Int J Parasitol Drugs Drug Resist ; 6(1): 12-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26862474

RESUMO

Chagas disease, caused by Trypanosoma cruzi, is the main cause of dilated cardiomyopathy in the Americas. Antiparasitic treatment mostly relies on benznidazole (Bzl) due to Nifurtimox shortage or unavailability. Both induce adverse drug effects (ADE) of varied severity in many patients, leading to treatment discontinuation or abandonment. Since dosage may influence ADE, we aimed to assess Bzl efficacy in terms of parasiticidal and anti-inflammatory activity, using doses lower than those previously reported. BALB/c mice infected with the T. cruzi RA strain were treated with different doses of Bzl. Parasitaemia, mortality and weight change were assessed. Parasite load, tissue infiltrates and inflammatory mediators were studied in the heart. Serum creatine kinase (CK) activity was determined as a marker of heart damage. The infection-independent anti-inflammatory properties of Bzl were studied in an in vitro model of LPS-treated cardiomyocyte culture. Treatment with 25 mg/kg/day Bzl turned negative the parasitological parameters, induced a significant decrease in IL-1ß, IL-6 and NOS2 in the heart and CK activity in serum, to normal levels. No mortality was observed in infected treated mice. Primary cultured cardiomyocytes treated with Bzl showed that inflammatory mediators were reduced via inhibition of the NF-κB pathway. A Bzl dose lower than that previously reported for treatment of experimental Chagas disease exerts adequate antiparasitic and anti-inflammatory effects leading to parasite clearance and tissue healing. This may be relevant to reassess the dose currently used for the treatment of human Chagas disease, aiming to minimize ADE.


Assuntos
Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Coração/efeitos dos fármacos , Nitroimidazóis/administração & dosagem , Tripanossomicidas/administração & dosagem , Trypanosoma cruzi/efeitos dos fármacos , Animais , Células Cultivadas , Cardiomiopatia Chagásica/prevenção & controle , Doença de Chagas/sangue , Creatina Quinase/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Coração/parasitologia , Coração/fisiopatologia , Humanos , Fatores Imunológicos/administração & dosagem , Inflamação/tratamento farmacológico , Inflamação/parasitologia , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B , Óxido Nítrico Sintase Tipo II/genética , Nitroimidazóis/efeitos adversos , Carga Parasitária , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Tripanossomicidas/efeitos adversos , Trypanosoma cruzi/isolamento & purificação , Trypanosoma cruzi/patogenicidade , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA