Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 19(8): 1012-1020, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30652650

RESUMO

BACKGROUND: Esophageal cancer responds poorly to traditional therapies, and novel treatments are needed. The phytochemical curcumin is a potential treatment for Esophageal Squamous Cell Carcinoma (ESCC). A curcumin metabolite, tetrahydrocurcumin (THCUR), has anti-cancer effects and greater bioavailability than curcumin. OBJECTIVE: Evaluate THCUR as an anti-cancer agent relative to curcumin and a standard cancer drug, 5-fluorouracil (5-FU), along with treatment interactions. MATERIALS AND METHODS: Assay cell proliferation and viability following individual and combined delivery of the compounds to three ESSC cell lines (TE-1, TE-8, and KY-5) that have different percentages of Cancer Stem Cells (CSCs). RESULTS: Curcumin was significantly more effective than 5-FU in all three cell lines. It also had the greatest effect on KY-5 cells, which have the highest CSC properties, consistent with the ability of curcumin to target CSCs. Effects on ESCC cell proliferation were not detected from 40µM THCUR, a dosage above the IC50 of curcumin and 5-FU. However, THCUR at this dosage in combination with 5-FU significantly suppressed TE-1 cell proliferation, but 5-FU alone did not. As TE-1 has low CSC properties relative to the two other cell lines, it was expected to have the least resistance to chemotherapeutic treatments. Surprisingly, TE-1 was the most resistant to inhibition by 5-FU. CONCLUSION: These results and the greater stability and water solubility of THCUR than curcumin support further testing of THCUR in combination with standard treatments, particularly for chemoresistant ESCC. In contrast to concerns that curcuminoids taken by patients through diet or diet supplements might interfere with chemotherapy, suppression of 5-FU efficacy by curcumin was not observed.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Fluoruracila/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Fluoruracila/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
2.
Cell Mol Bioeng ; 11(4): 241-253, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29983824

RESUMO

INTRODUCTION: Mesenchymal stem and progenitor cells (MSCs), which normally reside in the bone marrow, are critical to bone health and can be recruited to sites of traumatic bone injury, contributing to new bone formation. The ability to control the trafficking of MSCs provides therapeutic potential for improving traumatic bone healing and therapy for genetic bone diseases such as hypophosphatasia. METHODS: In this study, we explored the sphingosine-1-phosphate (S1P) signaling axis as a means to control the mobilization of MSCs into blood and possibly to recruit MSCs enhancing bone growth. RESULTS: Loss of S1P receptor 3 (S1PR3) leads to an increase in circulating CD45-/CD29+/CD90+/Sca1 putative mesenchymal progenitor cells, suggesting that blocking S1PR3 may stimulate MSCs to leave the bone marrow. Antagonism of S1PR3 with the small molecule VPC01091 stimulated acute migration of CD45-/CD29+/CD90+/Sca1+ MSCs into the blood as early as 1.5 hours after treatment. VPC01091 administration also increased ectopic bone formation induced by BMP-2 and significantly increased new bone formation in critically sized rat cranial defects, suggesting that mobilized MSCs may home to injuries to contribute to healing. We also explored the possibility of combining S1P manipulation of endogenous host cell occupancy with exogenous MSC transplantation for potential use in combination therapies. Importantly, reducing niche occupancy of host MSCs with VPC01091 does not impede engraftment of exogenous MSCs. CONCLUSIONS: Our studies suggest that MSC mobilization through S1PR3 antagonism is a promising strategy for endogenous tissue engineering and improving MSC delivery to treat bone diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA