Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38385694

RESUMO

RATIONALE: Sarcoidosis is a systemic granulomatous disorder associated with hypergammaglobulinemia and the presence of autoantibodies. The specific antigens initiating granulomatous inflammation in sarcoidosis are unknown and there is no specific test available to diagnose sarcoidosis. To discover novel sarcoidosis antigens, we developed a high-throughput T7 phage display library derived from the sarcoidosis cDNA and identified numerous clones differentiating sarcoidosis from other respiratory diseases. After clone sequencing and homology search, we identified two epitopes (Cofilinµ and Chain A) that specifically bind to serum IgGs of sarcoidosis patients. OBJECTIVES: To develop and validate an epitope-specific IgG-based immunoassay specific for sarcoidosis. METHODS: We chemically synthesized both immunoepitopes (Cofilinµ and Chain A), and generated rabbit polyclonal antibodies against both neoantigens. After extensive standardization, we developed a direct peptide ELISA and measured epitope-specific IgG in sera of 386 subjects including, healthy controls (n=100), three sarcoidosis cohorts (n=186), pulmonary tuberculosis (n=70) and lung cancer (n=30). MEASUREMENTS AND MAIN RESULTS: To develop a model to classify sarcoidosis from other groups, data were analyzed using five-fold cross-validation when adjusting for confounders. The Cofilinµ IgGs model yielded a mean sensitivity, specificity, and positive and negative predictive value (PPV, NPV) of 0.97, 0.9, 0.9 and 0.96, respectively. Those same measures for Chain A IgG antibody were 0.9, 0.83, 0.84 and 0.9 respectively. Combining both biomarkers improved AUC, sensitivity, specificity, PPV and NPV. CONCLUSIONS: These results provide a novel immunoassay for sarcoidosis. The discovery of two neoantigens facilitates the development of biospecific drug discovery and the sarcoidosis-specific model.

2.
iScience ; 27(1): 108746, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38299032

RESUMO

Macrophage migration inhibitory factor (MIF) is a versatile cytokine that influences a variety of cellular processes important for immune regulation and tissue homeostasis. Sarcoidosis is a granulomatous disease characterized by extensive local inflammation and increased T helper cell mediated cytokines. We have shown that MIF has a modulatory role in cytokine networks in sarcoidosis. We investigated the effect of exogenous MIF on sarcoidosis alveolar macrophages (AMs), CD14+ monocytes and peripheral blood mononuclear cells (PBMCs). Our results showed that MIF negatively regulates the increased MAPKs (pp38 and pERK1/2) activation by inducing Mitogen-activated protein kinase phosphatase (MKP)-1. We found that MIF decreased IL-6 and IL-1ß production, increased the percentage of regulatory T-cells (Tregs), and induced IL-1R antagonist (IL-1RA) and IL-10 production. Thus, the results of our study suggest that exogenous MIF modulates MAPK activation by inducing MKP-1and Tregs as well as IL-10 and IL-1RA, and hence plays a modulatory role in immune activation in sarcoidosis.

3.
Biomolecules ; 12(6)2022 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-35740974

RESUMO

Stroke is a leading threat to human life. Metabolic dysfunction of glucose may play a key role in stroke pathophysiology. Pharmacological hypothermia (PH) is a potential neuroprotective strategy for stroke, in which the temperature is decreased safely. The present study determined whether neuroprotective PH with chlorpromazine and promethazine (C + P), plus dihydrocapsaicin (DHC) improved glucose metabolism in acute ischemic stroke. A total of 208 adult male Sprague Dawley rats were randomly divided into the following groups: sham, stroke, and stroke with various treatments including C + P, DHC, C + P + DHC, phloretin (glucose transporter (GLUT)-1 inhibitor), cytochalasin B (GLUT-3 inhibitor), TZD (thiazolidinedione, phosphoenolpyruvate carboxykinase (PCK) inhibitor), and apocynin (nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor). Stroke was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 6 or 24 h of reperfusion. Rectal temperature was monitored before, during, and after PH. Infarct volume and neurological deficits were measured to assess the neuroprotective effects. Reactive oxygen species (ROS), NOX activity, lactate, apoptotic cell death, glucose, and ATP levels were measured. Protein expression of GLUT-1, GLUT-3, phosphofructokinase (PFK), lactate dehydrogenase (LDH), PCK1, PCK2, and NOX subunit gp91 was measured with Western blotting. PH with a combination of C + P and DHC induced faster, longer, and deeper hypothermia, as compared to each alone. PH significantly improved every measured outcome as compared to stroke and monotherapy. PH reduced brain infarction, neurological deficits, protein levels of glycolytic enzymes (GLUT-1, GLUT-3, PFK and LDH), gluconeogenic enzymes (PCK1 and PCK2), NOX activity and its subunit gp91, ROS, apoptotic cell death, glucose, and lactate, while raising ATP levels. In conclusion, stroke impaired glucose metabolism by enhancing hyperglycolysis and gluconeogenesis, which led to ischemic injury, all of which were reversed by PH induced by a combination of C + P and DHC.


Assuntos
Hipotermia , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Trifosfato de Adenosina/metabolismo , Animais , Clorpromazina , Gluconeogênese , Glucose , Hipotermia/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Lactatos , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Acidente Vascular Cerebral/metabolismo
4.
Brain Res ; 1763: 147463, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811844

RESUMO

BACKGROUND: After ischemic stroke, the increased catabolism of glucose (hyperglycolysis) results in the production of reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). A depressive or hibernation-like effect of C + P on brain activity was reported to induce neuroprotection. The current study assesses the effect of C + P on hyperglycolysis and NOX activation. METHODS: Adult male Sprague-Dawley rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by 6 or 24 h of reperfusion. At the onset of reperfusion, rats received C + P with or without temperature control, or phloretin [glucose transporter (GLUT)-1 inhibitor], or cytochalasin B (GLUT-3 inhibitor). We detected brain ROS, apoptotic cell death, and ATP levels along with HIF-1α expression. Cerebral hyperglycolysis was measured by glucose, protein expression of GLUT-1/3, and phosphofructokinase-1 (PFK-1), as well as lactate and lactate dehydrogenase (LDH) at 6 and 24 h of reperfusion. The enzymatic activity of NOX and protein expression of its subunits (gp91phox) were detected. Neural SHSY5Y cells were placed under 2 h of oxygen-glucose deprivation (OGD) followed by reoxygenation for 6 and 24 h with C + P treatment. Cell viability and protein levels of HIF-1α, GLUT-1/3, PFK-1, LDH, and gp91phox were measured. A HIF-1α overexpression vector was transfected into the cells, and then protein levels of HIF-1α, GLUT-1/3, PFK-1, and LDH were quantitated. In sham-operated rats and control cells, the protein levels of HIF-1α, GLUT-1/3, PFK-1, LDH, and gp91phox were measured at 6 and 24 h after C + P administration. RESULTS: C + P reduced the protein elevations after stroke in HIF-1α, glycolytic enzymes, as well as in ROS, cell death, glucose and lactate, but raised ATP levels in the brain. In ischemic rats exposed to GLUT-1/3 inhibitors, ROS, cell death, glucose, and lactate were all decreased, as well as GLUT-1, GLUT-3, LDH, and PFK-1 protein levels. C + P decreased ischemia-induced NOX activation by reducing the enzymatic activity and protein expression of the NOX subunit gp91phox, as was observed in the presence of GLUT-1/3 inhibitors. These markers were significantly decreased following C + P administration with the induced hypothermia, while C + P administration with temperature control at 37 °C induced lesser protection after ischemia stroke. In the OGD/reoxygenation model, C + P treatment increased cell viability and diminished protein levels of HIF-1α, GLUT-1, GLUT-3, PFK-1, LDH, and gp91phox. However, in OGD with HIF-1α overexpression, C + P was unable to effectively reduce the upregulated GLUT-1, GLUT-3, and LDH. In normal conditions, C + P reduced HIF-1α and the levels of key glycolytic enzymes depending on its pharmacological effect. CONCLUSION: C + P, partially depending on hypothermia, attenuates hyperglycolysis and NOX activation through HIF-1α regulation.


Assuntos
Clorpromazina/uso terapêutico , Glicólise/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , AVC Isquêmico/tratamento farmacológico , Prometazina/uso terapêutico , Animais , Clorpromazina/farmacologia , Glucose/deficiência , Transportador de Glucose Tipo 1/efeitos dos fármacos , Transportador de Glucose Tipo 3/efeitos dos fármacos , Hipóxia , Infarto da Artéria Cerebral Média/tratamento farmacológico , L-Lactato Desidrogenase/efeitos dos fármacos , Masculino , NADPH Oxidase 2/efeitos dos fármacos , Fosfofrutoquinase-1/efeitos dos fármacos , Prometazina/farmacologia , Ratos , Ratos Sprague-Dawley
5.
Neural Regen Res ; 16(6): 1017-1023, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269745

RESUMO

Normobaric oxygen therapy has gained attention as a simple and convenient means of achieving neuroprotection against the pathogenic cascade initiated by acute ischemic stroke. The mechanisms underlying the neuroprotective efficacy of normobaric oxygen therapy, however, have not been fully elucidated. It is hypothesized that cerebral hyperglycolysis is involved in the neuroprotection of normobaric oxygen therapy against ischemic stroke. In this study, Sprague-Dawley rats were subjected to either 2-hour middle cerebral artery occlusion followed by 3- or 24-hour reperfusion or to a permanent middle cerebral artery occlusion event. At 2 hours after the onset of ischemia, all rats received either 95% oxygen normobaric oxygen therapy for 3 hours or room air. Compared with room air, normobaric oxygen therapy significantly reduced the infarct volume, neurological deficits, and reactive oxygen species and increased the production of adenosine triphosphate in ischemic rats. These changes were associated with reduced transcriptional and translational levels of the hyperglycolytic enzymes glucose transporter 1 and 3, phosphofructokinase 1, and lactate dehydrogenase. In addition, normobaric oxygen therapy significantly reduced adenosine monophosphate-activated protein kinase mRNA expression and phosphorylated adenosine monophosphate-activated protein kinase protein expression. These findings suggest that normobaric oxygen therapy can reduce hyperglycolysis through modulating the adenosine monophosphate-activated protein kinase signaling pathway and alleviating oxidative injury, thereby exhibiting neuroprotective effects in ischemic stroke. This study was approved by the Institutional Animal Investigation Committee of Capital Medical University (approval No. AEEI-2018-033) on August 13, 2018.

6.
Brain Res ; 1724: 146406, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454517

RESUMO

OBJECTIVE: The present study aimed to determine if hypothermia augments the neuroprotection conferred by MSC administration by providing a conducive micro-environment. METHODS: Sprague-Dawley rats were subjected to 1.5 h middle cerebral artery occlusion (MCAO) followed by 6 or 24 h of reperfusion for molecular analyses, as well as 1, 14 and 28 days for brain infarction or functional outcomes. Rats were treated with either MSC (1 × 105), LCI (cold saline, 0.6 ml/min, 5 min) or both. Brain damage was determined by Infarct volume and neurological deficits. Long-term functional outcomes were evaluated using foot-fault and Rota-rod testing. Human neural SHSY5Y cells were investigated in vitro using 2 h oxygen-glucose deprivation (OGD) followed by MSC with or without hypothermia (HT) (34 °C, 4 h). Mitochondrial transfer was assessed by confocal microscope, and cell damage was determined by cell viability, ATP, and ROS level. Protein levels of IL-1ß, BAX, Bcl-2, VEGF and Miro1 were measured by Western blot following 6 h and 24 h of reperfusion and reoxygenation. RESULTS: MSC, LCI, and LCI + MSC significantly reduced infarct volume and deficit scores. Combination therapy of LCI + MSC precipitated better long-term functional outcomes than monotherapy. Upregulation of Miro1 in the combination group increased mitochondrial transfer and lead to a greater increase in neuronal cell viability and ATP, as well as a decrease in ROS. Further, combination therapy significantly decreased expression of IL-1ß and BAX while increasing Bcl-2 and VEGF expression. CONCLUSION: Therapeutic hypothermia upregulated Miro1 and enhanced MSC mitochondrial transfer-mediated neuroprotection in ischemic stroke. Combination of LCI with MSC therapy may facilitate clinical translation of this approach.


Assuntos
Isquemia Encefálica/metabolismo , Hipotermia Induzida/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Lesões Encefálicas/metabolismo , Isquemia Encefálica/terapia , Modelos Animais de Doenças , Hipotermia/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Isquemia/metabolismo , Isquemia/terapia , Masculino , Células-Tronco Mesenquimais/metabolismo , Neurônios/metabolismo , Neuroproteção/fisiologia , Ratos , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/metabolismo
7.
Curr Neurovasc Res ; 16(3): 232-240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31232236

RESUMO

BACKGROUND: The inflammatory response to acute cerebral ischemia is a major factor in stroke pathobiology and patient outcome. In the clinical setting, no effective pharmacologic treatments are currently available. Phenothiazine drugs, such as chlorpromazine and promethazine, (C+P) have been widely studied because of their ability to induce neuroprotection through artificial hibernation after stroke. The present study determined their effect on the inflammatory response. METHODS: Sprague-Dawley rats were divided into 4 groups: (1) sham, (2) stroke, (3) stroke treated by C+P without temperature control and (4) stroke treated by C+P with temperature control (n=8 per group). To assess the neuroprotective effect of C+P, brain damage was measured using infarct volume and neurological deficits. The expression of inflammatory response molecules tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) was determined by real-time PCR and Western blotting. RESULTS: TNF-α, IL-1ß, ICAM-1, VCAM-1, and NF-κB mRNA and protein expressions were upregulated, and brain damage and neurological deficits were increased after stroke. These markers of cerebral injury were significantly reduced following C+P administration under drug-induced hypothermia, while C+P administration under normal body temperature reduced them by a lesser degree. CONCLUSION: This study showed an inhibitory effect of C+P on brain inflammation, which may be partially dependent on drug-induced hibernation, as well as other mechanisms of action by these drugs. These findings further suggest the great potential of C+P in the clinical treatment of ischemic stroke.


Assuntos
Antipsicóticos/uso terapêutico , Encéfalo/fisiopatologia , Hibernação/fisiologia , Neuroproteção/fisiologia , Fenotiazinas/uso terapêutico , Acidente Vascular Cerebral/prevenção & controle , Animais , Antipsicóticos/farmacologia , Encéfalo/efeitos dos fármacos , Hibernação/efeitos dos fármacos , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Masculino , Neuroproteção/efeitos dos fármacos , Fenotiazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/fisiopatologia
8.
Neurol Res ; 41(8): 742-748, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31099309

RESUMO

Introduction: Fine particle pollution, including diesel exhaust particles (DEP), is a well-recognized and significant threat to public health. Cerebrovascular disease has been shown to be among the pathologies produced by fine particle exposure, and is thought to arise in this context through oxidative and inflammatory mechanisms. The manner by which these mechanisms interface with normal cerebral metabolism in their promotion of cerebrovascular pathogenesis, however, remains to be elucidated. Recent evidence has emerged that implicates a new pathway in post-stroke oxidative injury: gluconeogenesis. Therefore, we investigated whether diesel exhaust particle (DEP)-mediated oxidative injury to brain cells was associated with upregulation of the gluconeogenic pathway. Methods: Human neuroblastoma SH-SY5Y cells were maintained in complete Dulbecco's Modified Eagle's Medium (DMEM)/F12 at 37°C. Cells were exposed to freshly dispersed DEP preparations at 0, 6.25, 12.5, 25, 50, 100, or 200 µg/ml for either 3 or 24 h. Cell survival was then gauged by MTT assay, intracellular oxidative stress was quantified by fluorescence, and expression of gluconeogenic enzymes was assayed by quantitative RT-PCR. Results: Exposure to increasing concentrations of DEP yielded proportional, significant decreases in cell viability in conjunction with proportional, significant increases in intracellular ROS generation. These findings occurred in the context of DEP-induced reactive gluconeogenesis, as demonstrated by significant transcriptional upregulation of the key regulatory gluconeogenic enzymes PEPCK, PC, G6PC, and FBP. Conclusion: Gluconeogenesis was induced in human neural cells exposed to fine particles (DEP), in association with cell damage and oxidative stress. These findings suggest that the pathogenesis of cerebrovascular injury due to fine particle pollutant exposure may proceed through derangements in gluconeogenic metabolism. Abbreviations: DEP: diesel exhaust particles, ICA: intracranial atherosclerosis, ROS: reactive oxygen species.


Assuntos
Poluentes Atmosféricos/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Emissões de Veículos/toxicidade , Poluição do Ar , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo
9.
Neurol Res ; 39(6): 530-537, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28415917

RESUMO

OBJECTIVES: The rehabilitative benefits of physical exercise after stroke appear to be contingent upon exercise initiation timing. The present study assessed the hypothesis that very early post-stroke exercise would amplify cellular stress and increases expression of pro-inflammatory mediators, while exercise initiated later would limit the inflammation associated with cerebral ischemia/reperfusion injury. METHODS: Adult rats were subjected to middle cerebral artery occlusion and subsequently assigned to one of seven groups: one sham injury control group, three stroke groups subjected to exercise initiated after 6, 24 hours, or 3 days of reperfusion, and three stroke groups not subjected to exercise. Expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule (VCAM-1), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) were examined 3 and 24 hours after completion of exercise regimens (and at corresponding time points in non-exercise controls). Heat shock protein-70 (Hsp70) and hypoxia inducible factor-1α (HIF-1α) expression levels were also compared between exercise and non-exercise groups. RESULTS: Early post-stroke exercise was associated with increased expression of pro-inflammatory mediators (ICAM-1, VCAM-1, TNF-α, and IL-1ß) and increased expression of cell stress markers (Hsp70 and HIF-1α). Exercise initiated after 3 days of reperfusion was associated with decreased expression of these molecules. CONCLUSION: Post-stroke exercise, if too early, may result in elevated levels of cell stress and increased expression of pro-inflammatory cytokines, which may amplify the tissue damage associated with cerebral ischemia/reperfusion injury. The results shed light on the manner in which exercise initiation timing may affect post-stroke rehabilitation.


Assuntos
Traumatismo por Reperfusão/metabolismo , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Interleucina-1beta/metabolismo , Masculino , Condicionamento Físico Animal , Ratos Sprague-Dawley , Traumatismo por Reperfusão/reabilitação , Acidente Vascular Cerebral/metabolismo
10.
Mol Neurobiol ; 54(2): 1263-1277, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26820681

RESUMO

In a thromboembolic stroke model after reperfusion by recombinant tissue plasminogen activator (rt-PA), we aimed to determine whether therapeutic hypothermia (TH) and ethanol (EtOH) in combination with low concentration (60 %) of normobaric oxygen (NBO) enhanced neuroprotection, as compared to using each of these agents alone. We further aimed to elucidate a potential role of the NADPH oxidase (NOX), phosphorylated protein kinase B (Akt), and protein kinase C-δ (PKC-δ) pathway in oxidative stress and neuroprotection. In Sprague-Dawley rats, a focal middle cerebral artery (MCA) occlusion was induced by an autologous embolus in the following experimental groups: rt-PA treatment alone, rt-PA + NBO treatment, rt-PA + TH at 33 °C, rt-PA + EtOH, rt-PA + NBO + EtOH, rt-PA + NBO + TH, rt-PA + NOX inhibitor, rt-PA + EtOH + NOX inhibitor, or rt-PA + EtOH + Akt inhibitor. Control groups included sham-operated without stroke or stroke without treatment. Infarct volume and neurological deficit were assessed at 24 h after rt-PA-induced reperfusion with or without treatments. ROS levels, NOX activity, and the protein expression of NOX subunits p22phox, p47phox, p67phox, gp91phox, as well as PKC-δ and phosphorylated Akt were measured at 3 and 24 h after rt-PA-induced reperfusion. Following rt-PA in thromboembolic stroke rats, NBO combined with TH or EtOH more effectively decreased infarct volume and neurological deficit, as well as reactive oxygen species (ROS) production than with any of the used monotherapies. NOX activity and subunit expressions were downregulated and temporally associated with reduced PKC-δ and increased p-Akt expression. The present study demonstrated that combining NBO with either TH or EtOH conferred similar neuroprotection via modulation of NOX activation. The results suggest a role of Akt in NOX activation and implicate an upstream PKC-δ pathway in the Akt regulation of NOX. It is possible to substitute EtOH for TH, thus circumventing the difficulties in clinical application of TH through the comparatively easier usage of EtOH as a potential stroke management.


Assuntos
Lesões Encefálicas/prevenção & controle , Etanol/administração & dosagem , Hipotermia Induzida/métodos , Oxigênio/administração & dosagem , Acidente Vascular Cerebral/terapia , Tromboembolia/terapia , Administração por Inalação , Animais , Lesões Encefálicas/metabolismo , Terapia Combinada/métodos , NADPH Oxidases/fisiologia , Proteína Quinase C-delta/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Tromboembolia/metabolismo
11.
J Neurosci Res ; 95(4): 1017-1024, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27571707

RESUMO

The effectiveness of the rehabilitative benefits of physical exercise appears to be contingent upon when the exercise is initiated after stroke. The present study assessed the hypothesis that very early exercise increases the extent of apoptotic cell death via increased expression of proapoptotic proteins in a rat stroke model. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 hr using an intraluminal filament and assigned to four nonexercise and three exercise groups. Exercise on a Rota-Rod was initiated for 30 min at 6 hr (considered very early), at 24 hr (early), and at 3 days (relatively late) after reperfusion. At 24 hr after exercise, apoptotic cell death was determined. At 3 and 24 hr after exercise, the expression of pro- and antiapoptotic proteins was evaluated through Western blotting. As expected, ischemic stroke significantly increased the levels of apoptotic cell death. Compared with the stroke group without exercise, apoptotic cell death was further increased (P < 0.05) at 6 hr but not at 24 hr or 3 days with exercise. This exacerbated cell injury was associated with increased expression of proapoptotic proteins (BAX and caspase-3). The expression of Bcl-2, an antiapoptotic protein, was not affected by exercise. In ischemic stroke, apoptotic cell death was enhanced by very early exercise in association with increased expression of proapoptotic proteins. These results shed light on the time-sensitive effect of exercise in poststroke rehabilitation. © 2016 Wiley Periodicals, Inc.


Assuntos
Apoptose/fisiologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/reabilitação , Terapia por Exercício/métodos , Análise de Variância , Animais , Caspase 3/metabolismo , Fragmentação do DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Fatores de Tempo , Proteína X Associada a bcl-2/metabolismo
12.
Brain Res ; 1648(Pt A): 266-276, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27495986

RESUMO

INTRODUCTION: Although physical exercise has emerged as a potential therapeutic modality for functional deficits following ischemic stroke, the extent of this effect appears to be contingent upon the time of exercise initiation. In the present study, we assessed how exercise timing affected brain damage through hyperglycolysis-associated NADPH oxidase (NOX) activation. METHODS: Using an intraluminal filament, adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2h and assigned to one non-exercise and three exercise groups. Exercise on Rota-rod was initiated for 30min at 6h (considered very early), at 24h (early), and at day 3 (relatively late) after reperfusion. Lactate production was measured 30min after exercise completion, and NOX activity and protein expression of NOX subunits (p47(phox), gp91(phox), p22(phox) and p67(phox)) and glucose transporter 1 and 3 (Glut-1 and -3) were measured at 3 and 24h after exercise. Apoptotic cell death was determined at 24h after exercise. RESULTS: Lactate production and Glut-1 and Glut-3 expression were increased after very early exercise (6h), but not after late exercise (3 days), suggesting hyperglycolysis. NOX activity was increased with the initiation of exercise at 6h (P<0.05), but not 24h or 3 days, following stroke. Early (6 and 24h), but not late (3 days), post-stroke exercise was associated with increased (P<0.05) expression of the NOX protein subunit p47(phox), gp91(phox)and p67(phox). This may have led to the enhanced apoptosis observed after early exercise in ischemic rats. CONCLUSION: Hyperglycolysis and NOX activation was associated with an elevation in apoptotic cell death after very early exercise, and the detrimental effect of exercise on stroke recovery began to decrease when exercise was initiated 24h after reperfusion.


Assuntos
Lesões Encefálicas/enzimologia , Lesões Encefálicas/prevenção & controle , NADPH Oxidases/metabolismo , Condicionamento Físico Animal , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/prevenção & controle , Animais , Apoptose , Lesões Encefálicas/complicações , Córtex Cerebral/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Ácido Láctico/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , Fosfoproteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Acidente Vascular Cerebral/complicações
13.
Brain Res ; 1627: 31-40, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26319679

RESUMO

BACKGROUND AND PURPOSE: Our lab has previously elucidated the neuroprotective effects of normobaric oxygen (NBO) and ethanol (EtOH) in ischemic stroke. The present study further evaluated the effect of EtOH or hypothermia (Hypo) in the presence of low concentration of NBO and determined whether EtOH can substitute hypothermia in a more clinically relevant autologous embolus rat stroke model in which reperfusion was established by tissue-type plasminogen activator (t-PA). METHODS: At 1h of middle cerebral artery occlusion (MCAO) by an autologous embolus, rats received t-PA. In addition, at the same time, ischemic animals were treated with either EtOH (1.0 g/kg) or hypothermia (33°C for 3h) in combination with NBO (60% for 3h). Extent of neuroprotection was assessed by apoptotic cell death measured by ELISA and Western immunoblotting analysis for pro- (AIF, activated Caspase-3, Bax) and anti-apoptotic (Bcl-2) protein expression at 3 and 24h of reperfusion induced by t-PA administration. RESULTS: Compared to ischemic rats treated only with t-PA, animals with NBO, hypothermia or EtOH had significantly reduced apoptotic cell death by 32.5%, 43.1% and 36.0% respectively. Furthermore, combination therapy that included NBO+EtOH or NBO+Hypo with t-PA exhibited a much larger decline (p<0.01) in the cell death by 71.1% and 73.6%, respectively. Similarly, NBO+EtOH or NBO+Hypo treatment in addition to t-PA enhanced beneficial effects on both pro- and anti-apoptotic protein expressions as compared to other options. CONCLUSIONS: Neuroprotection after stroke can be enhanced by combination treatment with either EtOH or hypothermia in the presence of t-PA and 60% NBO. Because the effects produced by EtOH and hypothermia are comparable, their mechanism of action may be not only similar but also could be interchangeable in future clinical trials.


Assuntos
Depressores do Sistema Nervoso Central/uso terapêutico , Etanol/uso terapêutico , Fibrinolíticos/uso terapêutico , Hipotermia Induzida , Oxigenoterapia , Acidente Vascular Cerebral/terapia , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Fator de Indução de Apoptose/metabolismo , Isquemia Encefálica/complicações , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Fragmentação do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Fibrinolíticos/farmacologia , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Fatores de Tempo , Proteína X Associada a bcl-2/metabolismo
14.
Stroke ; 44(5): 1418-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23512978

RESUMO

BACKGROUND AND PURPOSE: Normobaric oxygenation (NBO) and ethanol both provide neuroprotection in stroke. We evaluated the enhanced neuroprotective effect of combining these 2 treatments in a rat stroke model. METHODS: Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2 hours. Reperfusion was then established and followed by treatment with either (1) an intraperitoneal injection of ethanol (1.0 g/kg), (2) NBO treatment (2-hour duration), or (3) NBO plus ethanol. The extent of brain injury was determined by infarct volume and motor performance. Oxidative metabolism was determined by ADP/ATP ratios, reactive oxygen species levels, nicotinamide adenine dinucleotide phosphate oxidase activity, and pyruvate dehydrogenase activity. Protein expression of major nicotinamide adenine dinucleotide phosphate oxidase subunits (p47(phox), gp91(phox), and p67(phox)) and the enzyme pyruvate dehydrogenase was evaluated through Western immunoblotting. RESULTS: NBO and ethanol monotherapies each demonstrated reductions as compared to stroke without treatment in infarct volume (36.7% and 37.9% vs 48.4%) and neurological deficits (score of 6.4 and 6.5 vs 8.4); however, the greatest neuroprotection (18.8% of infarct volume and 4.4 neurological deficit) was found in animals treated with combination therapy. This neuroprotection was associated with the largest reductions in ADP/ATP ratios, reactive oxygen species levels, and nicotinamide adenine dinucleotide phosphate oxidase activity, and the largest increase in pyruvate dehydrogenase activity. CONCLUSIONS: Combination therapy with NBO and ethanol enhances the neuroprotective effect produced by each therapy alone. The mechanism behind this synergistic action is related to changes in cellular metabolism after ischemia reperfusion. NBO plus ethanol is attractive for clinical study because of its ease of use, tolerability, and tremendous neuroprotective potential in stroke.


Assuntos
Isquemia Encefálica/terapia , Encéfalo/metabolismo , Etanol/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Oxigenoterapia/métodos , Acidente Vascular Cerebral/terapia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Terapia Combinada , Modelos Animais de Doenças , Etanol/farmacologia , Fármacos Neuroprotetores/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Resultado do Tratamento
15.
J Neurochem ; 126(1): 113-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23350720

RESUMO

Ethanol provides neuroprotection following ischemia/reperfusion. This study assessed ethanol's effect on hyperglycolysis and NADPH oxidase (NOX) activation. Adult, male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Three sets of experiments were conducted to determine ethanol's effect on (i) conferring neuroprotection by measuring infarct volume and neurological deficits 24 h post reperfusion; (ii) cerebral glucose metabolism and lactic acidosis by measuring brain and blood glucose concentrations and protein expression of glucose transporter 1 and 3 (GLUT1, GLUT3), phosphofructokinase (PFK), as well as lactic acidosis by measuring lactate dehydrogenase (LDH), and lactate; and (iii) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activation by detecting enzymatic activity and subunit expression at 3 h after reperfusion. When administered upon reperfusion, ethanol (1.5 g/kg) reduced infarct volume by 40% (p < 0.01) and neurological deficits by 48% at 24 h post reperfusion while reducing (p < 0.01) elevations in glycolytic protein expression and lactate levels during early reperfusion (3 h). Ethanol increased the reductions in cerebral glucose concentration at 3 h post reperfusion by 64% (p < 0.01) while enhancing (p < 0.01) post stroke blood glucose concentration, suggesting a reduced cellular glucose uptake and utilization. Ethanol decreased (p < 0.01) stroke-induced NOX activation by reducing enzymatic activity and gp91(phox) expression by 45% and 38%, respectively. Post-ischemia ethanol treatment exerts neuroprotection through attenuation of hyperglycolysis and associated NOX activation. Because of the lack of associated hypoglycemia and selectivity toward decreasing cerebral metabolism, further investigation of ethanol's use as a post-stroke therapy, especially in the context of hyperglycemia, seems warranted.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Depressores do Sistema Nervoso Central/uso terapêutico , Etanol/uso terapêutico , Glicólise/efeitos dos fármacos , NADPH Oxidases/metabolismo , Fármacos Neuroprotetores , Acidente Vascular Cerebral/tratamento farmacológico , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Glicemia/metabolismo , Química Encefálica/fisiologia , Isquemia Encefálica/patologia , Isquemia Encefálica/psicologia , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/patologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Masculino , Fosfofrutoquinases/metabolismo , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/psicologia
16.
J Neurol Sci ; 323(1-2): 134-40, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23040263

RESUMO

The present study, using a rodent model of closed-head diffuse traumatic brain injury (TBI), investigated the role of dysregulated aquaporins (AQP) 4 and 9, as well as hypoxia inducible factor -1α(HIF-1α) on brain edema formation, neuronal injury, and functional deficits. TBI was induced in adult (400-425 g), male Sprague-Dawley rats using a modified Marmarou's head impact-acceleration device (450 g weight dropped from 2m height). Animals in each treatment group were administered intravenous anti-AQP4 or -AQP9 antibodies or 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α) 30 min after injury. At 24h post-TBI, animals (n=6 each group) were sacrificed to examine the extent of brain edema by water content, as well as protein expression of AQP and HIF-1α by Western immune-blotting. At 48-hours post-TBI, neuronal injury (n=8 each group) was assessed by FluoroJade (FJ) histochemistry. Spatial learning and memory deficits were evaluated by radial arm maze (n=8 each group) up to 21 days post-TBI. Compared to non-injured controls, significant (p<0.05) increases in the expression of AQP4 and -9 were detected in the brains of injured animals. In addition, significant (p<0.05) brain edema after TBI was associated with increases (p <0.05) both in neuronal injury (FJ labeling) and neurobehavioral deficits. Selective inhibition of either AQP4 or -9, or HIF-1α significantly (p<0.05) decreased the expression of the proteins. In addition, inhibition of the AQPs and HIF-1α significantly (p<0.05) ameliorated brain edema, as well as the number of injured neurons in cortical layers II/III and V/VI, striatum and hippocampal regions CA1/CA3. Finally, compared to the non-treated TBI animals, AQP or HIF-1α inhibition significantly (p<0.01) improved neurobehavioral outcomes after TBI. Taken together, the present data supports a causal relation between HIF-AQP mediated cerebral edema, secondary neuronal injury, and tertiary behavioral deficits post-TBI. The data further suggests that upstream modulation of the molecular patho-trajectory effectively ameliorates both neuronal injury and behavioral deficits post-TBI.


Assuntos
Aquaporina 4/fisiologia , Aquaporinas/fisiologia , Lesões Encefálicas/tratamento farmacológico , Estradiol/análogos & derivados , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Imunoglobulina G/uso terapêutico , Proteínas do Tecido Nervoso/fisiologia , 2-Metoxiestradiol , Animais , Aquaporina 4/antagonistas & inibidores , Aquaporina 4/biossíntese , Aquaporina 4/genética , Aquaporina 4/imunologia , Aquaporinas/antagonistas & inibidores , Aquaporinas/biossíntese , Aquaporinas/genética , Aquaporinas/imunologia , Dano Encefálico Crônico/etiologia , Dano Encefálico Crônico/prevenção & controle , Dano Encefálico Crônico/psicologia , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/psicologia , Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/patologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Corpo Estriado/patologia , Estradiol/farmacologia , Estradiol/uso terapêutico , Fluoresceínas , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Compostos Orgânicos/farmacocinética , Ratos , Ratos Sprague-Dawley
17.
Neurol Res ; 34(5): 462-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22450152

RESUMO

Traumatic brain injury (TBI) induces brain edema via water and glycerol transport channels, called aquaporins (AQPs). The passage of glycerol across brain cellular compartments has been shown during edema. Using a modified impact/head acceleration rodent model of diffuse TBI, we assessed the role of hypoxia inducible factor (HIF)-1alpha in regulating AQP9 expression and glycerol accumulation during the edema formation. Adult (400-425 g) male Sprague-Dawley rats received a closed head injury with a weight drop (450 g, 2-m height) and were allowed to survive up to 48 hours. Some rat groups were administered 2-methoxyestradiol (2ME2, a HIF-1alpha inhibitor) 30 minutes after injury and were euthanized at 4 and 24 hours after injury. Brain edema was measured directly by water content, and glycerol concentration was determined by the Cayman Glycerol Assay. HIF-1alpha and AQP9 protein levels were assessed by Western immunoblotting. This study demonstrated a significant (P<0·05) increase in brain water content at 4-48 hours following impact. Cerebral glycerol was significantly (P<0.05) up-regulated at as early as 1 hour and remained at high levels for up to 48 hours. Similarly, significant (P<0.05) increases in HIF-1alpha and AQP9 protein levels were found at 1 hour and up to 48 hours after injury. Compared to untreated but injured rats, inhibition of HIF-1alpha by 2ME2 significantly (P<0.05) reduced the TBI-induced AQP9 up-regulation. This reduction was temporally associated with significant (P<0.05) decreases in both edema and glycerol accumulation. The data suggested an associated induction of HIF-1alpha, AQP9, and extracellular glycerol accumulation in edema formation following diffuse TBI. The implication of HIF-1alpha and AQP9 underlying TBI-induced edema formation offers possibilities for novel TBI therapies.


Assuntos
Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Lesões Encefálicas/complicações , Glicerol/metabolismo , 2-Metoxiestradiol , Animais , Aquaporinas/metabolismo , Edema Encefálico/prevenção & controle , Lesões Encefálicas/tratamento farmacológico , Modelos Animais de Doenças , Estradiol/administração & dosagem , Estradiol/análogos & derivados , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Moduladores de Tubulina/administração & dosagem
18.
J Neurosurg ; 114(1): 92-101, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20617879

RESUMO

OBJECT: The present study investigated the role of hypoxia-inducible factor-1α (HIF-1α), aquaporin-4 (AQP-4), and matrix metalloproteinase-9 (MMP-9) in blood-brain barrier (BBB) permeability alterations and brain edema formation in a rodent traumatic brain injury (TBI) model. METHODS: The brains of adult male Sprague-Dawley rats (400-425 g) were injured using the Marmarou closed-head force impact model. Anti-AQP-4 antibody, minocycline (an inhibitor of MMP-9), or 2-methoxyestradiol (2ME2, an inhibitor of HIF-1α), was administered intravenously 30 minutes after injury. The rats were killed 24 hours after injury and their brains were examined for protein expression, BBB permeability, and brain edema. Expression of HIF-1α, AQP-4, and MMP-9 as well as expression of the vascular basal lamina protein (laminin) and tight junction proteins (zona occludens-1 and occludin) was determined by Western blotting. Blood-brain barrier disruption was assessed by FITC-dextran extravasation, and brain edema was measured by the brain water content. RESULTS: Significant (p < 0.05) edema and BBB extravasations were observed following TBI induction. Compared with sham-operated controls, the injured animals were found to have significantly (p < 0.05) enhanced expression of HIF-1α, AQP-4, and MMP-9, in addition to reduced amounts (p < 0.05) of laminin and tight junction proteins. Edema was significantly (p < 0.01) decreased after inhibition of AQP-4, MMP-9, or HIF-1α. While BBB permeability was significantly (p < 0.01) ameliorated after inhibition of either HIF-1α or MMP-9, it was not affected following inhibition of AQP-4. Inhibition of MMP reversed the loss of laminin (p < 0.01). Finally, while inhibition of HIF-1α significantly (p < 0.05) suppressed the expression of AQP-4 and MMP-9, such inhibition significantly (p < 0.05) increased the expression of laminin and tight junction proteins. CONCLUSIONS: The data support the notion that HIF-1α plays a role in brain edema formation and BBB disruption via a molecular pathway cascade involving AQP-4 and MMP-9. Pharmacological blockade of this pathway in patients with TBI may provide a novel therapeutic strategy.


Assuntos
Aquaporina 4/fisiologia , Barreira Hematoencefálica/fisiopatologia , Edema Encefálico/fisiopatologia , Lesões Encefálicas/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Metaloproteinase 9 da Matriz/fisiologia , 2-Metoxiestradiol , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Aquaporina 4/efeitos dos fármacos , Aquaporina 4/imunologia , Barreira Hematoencefálica/metabolismo , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Estradiol/análogos & derivados , Estradiol/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Laminina/metabolismo , Masculino , Inibidores de Metaloproteinases de Matriz , Proteínas de Membrana/metabolismo , Minociclina/farmacologia , Modelos Animais , Ocludina , Fosfoproteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA