Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 196(1): 261-272, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38758108

RESUMO

Acidity is a key factor controlling fruit flavor and quality. In a previous study, combined transcriptome and methylation analyses identified a P3A-type ATPase from apple (Malus domestica), MdMa11, which regulates vacuolar pH when expressed in Nicotiana benthamiana leaves. In this study, the role of MdMa11 in controlling fruit acidity was verified in apple calli, fruits, and plantlets. In addition, we isolated an APETALA2 domain-containing transcription factor, designated MdESE3, based on yeast one-hybrid (Y1H) screening using the MdMa11 promoter as bait. A subcellular localization assay indicated that MdESE3 localized to the nucleus. Analyses of transgenic apple calli, fruits, and plantlets, as well as tomatoes, demonstrated that MdESE3 enhances fruit acidity and organic acid accumulation. Meanwhile, chromatin immunoprecipitation quantitative PCR, luciferase (LUC) transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the ethylene-responsive element (ERE; 5'-TTTAAAAT-3') upstream of the MdMa11 transcription start site, thereby activating its expression. Furthermore, MdtDT, MdDTC2, and MdMDH12 expression increased in apple fruits and plantlets overexpressing MdESE3 and decreased in apple fruits and plantlets where MdESE3 was silenced. The ERE was found in MdtDT and MdMDH12 promoters, but not in the MdDTC2 promoter. The Y1H, LUC transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the MdtDT and MdMDH12 promoters and activate their expression. Our findings provide valuable functional validation of MdESE3 and its role in the transcriptional regulation of MdMa11, MdtDT, and MdMDH12 and malic acid accumulation in apple.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Malatos , Malus , Proteínas de Plantas , Fatores de Transcrição , Malus/genética , Malus/metabolismo , Malatos/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas/genética , Plantas Geneticamente Modificadas , Genes de Plantas
2.
Int Urol Nephrol ; 54(1): 225-235, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34138419

RESUMO

OBJECTIVE: To explore the effect of miR-93-mediated Wnt/ß-catenin pathway on the vascular calcification (VC) of chronic renal failure (CRF). METHODS: SD rats were utilized to construct CRF models and divided into Control, CRF, CRF + LV (lentiviral vector)-miR-93 and CRF + LV-Con groups. Renal tissues collected from rats were performed hematoxylin and eosin (HE) staining and Masson staining, while the abdominal aorta was dissected for alizarin red staining and Von Kossa staining. VC-related genes were determined by qRT-PCR while Wnt/ß-catenin pathway-related proteins were examined by Western blotting. RESULTS: As compared to Control group, the serum levels of blood urea nitrogen (BUN), serum creatinine (Scr), phosphorus (P), cystatin C (Cys-C) and 24-h urea protein (24 h Upro), and the scores of renal interstitial lesion and fibrotic area in rats from CRF group were elevated, with the increased calcified area of aorta as well as the enhanced calcium content and ALP. Meanwhile, rats in the CRF group had up-regulated expression of OPN, OCN, RUNX2 and BMP-2 and down-regulated expression of miR-93. As for the expression of Wnt/ß-catenin pathway, rats in the CRF group had sharp increases in the protein expression of TCF4 and ß-catenin, while α-SMA was down-regulated. However, changes of the above were reversed in rats from CRF + LV-miR-93 group, and TCF4 was confirmed to be a target gene of miR-93. CONCLUSION: MiR-93, via inhibiting the activity of Wnt/ß-catenin pathway by targeting TCF4, can improve the renal function of CRF rats, thereby mitigating the vascular calcification of CRF.


Assuntos
Falência Renal Crônica/complicações , MicroRNAs/fisiologia , Calcificação Vascular/etiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
3.
Med Sci Monit ; 26: e924372, 2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32592386

RESUMO

BACKGROUND Diabetic nephropathy (DN) is one of the chronic microvascular complications of diabetes. This study focused on the protective effects of pyrroloquinoline quinone (PQQ) on oxidative stress (OS) in DN. MATERIAL AND METHODS Thirty Sprague Dawley rats were randomly selected for this study; 10 rats were randomly selected as the control group. The other 20 rats were established for the DN model. After establishment of the successful model, the DN model rats were randomly divided into a DN group and a PQQ group. The PQQ group was fed with a PQQ diet. Blood urea nitrogen (BUN), serum creatinine (SCr), and blood glucose levels were measured in each group, and OS-related protein expression and AMPK pathway were detected by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). At the same time, we constructed a DN model by culturing NRK-52E cells with high glucose to detect the molecular mechanisms. RESULTS The kidney function of the DN group was significantly decreased, SCr and BUN levels were significantly increased, and the renal structure under the microscope was disordered, and interstitial edema was obvious. The expression of SOD1, SOD2, GPX1, and GPX3 were significantly decreased, and the level of reactive oxygen species (ROS) was significantly increased. PQQ treatment can effectively alleviate renal function, improve structural damage, and inhibit OS. In vivo, PQQ can effectively inhibit high glucose-induced OS damage and activate the AMPK/FOXO3a signaling pathway. CONCLUSIONS PQQ improves renal structural damage and functional damage, and protects kidney cells in DN by inhibiting OS, which may be related to activating the AMPK/FOXO3a pathway.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Sequestradores de Radicais Livres/farmacologia , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cofator PQQ/farmacologia , Adenilato Quinase/efeitos dos fármacos , Adenilato Quinase/metabolismo , Animais , Glicemia/metabolismo , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Creatinina/metabolismo , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Glutationa Peroxidase/efeitos dos fármacos , Glutationa Peroxidase/genética , Rim/metabolismo , Rim/patologia , Distribuição Aleatória , Ratos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase-1/efeitos dos fármacos , Superóxido Dismutase-1/genética , Glutationa Peroxidase GPX1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA