Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Eur J Med Res ; 28(1): 604, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115039

RESUMO

Lymphocyte-activation gene 3 (LAG3) is a highly anticipated immune checkpoint in the context of cancer, exerting regulatory control over immune cell proliferation and function to reinforce the advancement of cancers. However, the comprehensive functional analysis of LAG3 across various cancer types remains undisclosed; thus, this study aims to investigate the pan-cancer expression profile of LAG3. We have investigated the expression profile, prognostic significance, and genetic alterations of LAG3 in various cancers while elucidating its characteristic in immune response regulation. Our findings demonstrated that elevated LAG3 expression is significantly associated with favorable prognosis in patients with cutaneous melanoma (SKCM), and it may be a potential biomarker for SKCM. Furthermore, multiple immune algorithms have highlighted the important regulatory role of LAG3 for the tumor-infiltrating immune cells including CD8 + T cells, B cells, dendritic cells (DCs), macrophages, and natural killer (NK) cells. We also examined the distribution of LAG3 at the single-cell level and explored its functional significance. A comprehensive and systematic analysis of LAG3 would facilitate a comprehensive evaluation of LAG3 in cancer biology and provide valuable insights for cancer management.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Prognóstico , Antígenos CD/metabolismo , Melanoma/genética , Melanoma/terapia , Multiômica , Proteína do Gene 3 de Ativação de Linfócitos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Imunoterapia
2.
Genes Dis ; 10(6): 2339-2350, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37554215

RESUMO

Pyroptosis is a regulated cell death pathway involved in numerous human diseases, especially malignant tumors. Recent studies have identified multiple pyroptosis-associated signaling molecules, like caspases, gasdermin family and inflammasomes. In addition, increasing in vitro and in vivo studies have shown the significant linkage between pyroptosis and immune regulation of cancers. Pyroptosis-associated biomarkers regulate the infiltration of tumor immune cells, such as CD4+ and CD8+ T cells, thus strengthening the sensitivity to therapeutic strategies. In this review, we explained the relationship between pyroptosis and cancer immunology and focused on the significance of pyroptosis in immune regulation. We also proposed the future application of pyroptosis-associated biomarkers in basic research and clinical practices to address malignant behaviors. Exploration of the underlying mechanisms and biological functions of pyroptosis is critical for immune response and cancer immunotherapy.

3.
Eur J Med Res ; 28(1): 207, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391787

RESUMO

BACKGROUND: It is critical to understand the mechanisms of human cancers in order to develop the effective anti-cancer therapeutic strategies. Recent studies indicated that primase polymerase (PRIMPOL) is strongly associated with the development of human cancers. Nevertheless, a systematic pan-cancer analysis of PRIMPOL remains to be further clarified. METHOD: Comprehensive multi-omics bioinformatics algorithms, such as TIMER2.0, GEPIA2.0 and cBioPortal, were utilized to evaluate the biological roles of PRIMPOL in pan-cancer, including the expression profiles, genomic alterations, prognostic values and immune regulation. RESULTS: PRIMPOL was upregulated in glioblastoma multiforme and kidney renal clear cell carcinoma. The brain lower grade glioma patients with enhanced PRIMPOL expression displayed poor prognostic values. We also demonstrated the PRIMPOL's immunomodulating effects on pan-cancer as well as its genomic changes and methylation levels. The aberrant expression of PRIMPOL was linked to various cancer-associated pathways, including DNA damage response, DNA repair, and angiogenesis, according to single-cell sequencing and function enrichment. CONCLUSIONS: This pan-cancer analysis offers a thorough review of the functional roles of PRIMPOL in human cancers, suggesting PRIMPOL as a potentially important biomarker for the progression and immunotherapy of various cancers.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , DNA Primase/genética , Multiômica , Prognóstico , Imunidade , Replicação do DNA
4.
Int J Biol Sci ; 19(8): 2458-2474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215986

RESUMO

YAP1 is a well-known core effector of the Hippo pathway in tumors, but its potential role in osimertinib resistance remained unexplored. Our study provides evidence that YAP1 acts as a potent promoter of osimertinib resistance. By inhibiting YAP1 with a novel inhibitor, CA3, and combining it with osimertinib, we observed a significant suppression of cell proliferation and metastasis, induction of apoptosis and autophagy, and a delay in the emergence of osimertinib resistance. Interestingly, CA3 combined with osimertinib executed its anti-metastasis and pro-tumor apoptosis in part through autophagy. Mechanistically, we found that YAP1, in collaboration with YY1, transcriptionally represses DUSP1, leading to the dephosphorylation of the EGFR/MEK/ERK pathway and YAP1 phosphorylation in osimertinib-resistant cells. Our results also validate that CA3, in combination with osimertinib, executes its anti-metastasis and pro-tumor apoptosis partly through autophagy and the YAP1/DUSP1/EGFR/MEK/ERK regulatory feedback loop in osimertinib-resistant cells. Remarkably, our findings illustrate that YAP1 protein is upregulated in patients after osimertinib treatment and osimertinib resistance. Overall, our study confirms that the YAP1 inhibitor CA3 increases DUSP1 with concomitant activation of the EGFR/MAPK pathway and induces autophagy to enhance the efficacy of third-generation EGFR-TKI treatments for NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Resistencia a Medicamentos Antineoplásicos/genética , Autofagia/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutação , Linhagem Celular Tumoral , Fosfatase 1 de Especificidade Dupla/genética , Fator de Transcrição YY1
5.
Cancers (Basel) ; 15(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046819

RESUMO

Metastasis is a critical stage of tumor progression, a crucial challenge of clinical therapy, and a major cause of tumor patient death. Numerous studies have confirmed that distant tumor metastasis is dependent on the formation of pre-metastatic niche (PMN). Recent studies have shown that extracellular vesicles (EVs) play an important role in PMN formation. The non-coding RNAs (ncRNAs) derived from EVs mediate PMN formation and tumor-distant metastasis by promoting an inflammatory environment, inhibiting anti-tumor immune response, inducing angiogenesis and permeability, and by microenvironmental reprogramming. Given the stability and high abundance of ncRNAs carried by EVs in body fluids, they have great potential for application in tumor diagnosis as well as targeted interventions. This review focuses on the mechanism of ncRNAs derived from EVs promoting tumor PMN formation and distant metastasis to provide a theoretical reference for strategies to control tumor metastasis.

6.
Genes Dis ; 10(1): 135-150, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37013031

RESUMO

Several types of modifications have been proven to participate in the metabolism and processing of different RNA types, including non-coding RNAs (ncRNAs). N-6-methyladenosine (m6A) is a dynamic and reversible RNA modification that is closely involved in the ncRNA homeostasis, and serves as a crucial regulator for multiple cancer-associated signaling pathways. The ncRNAs usually regulate the epigenetic modification, mRNA transcription and other biological processes, displaying enormous roles in human cancers. In this review, we summarized the significant implications of m6A-ncRNA interaction in various types of cancers. In particular, the interplay between m6A and ncRNAs in cancer pathogenesis and therapeutic resistance are being widely recognized. We also discussed the relevance of m6A-ncRNA interaction in immune regulation, followed by the interference on cancer immunotherapeutic procedures. In addition, we briefly highlighted the computation tools that could identify the accurate features of m6A methylome among ncRNAs. In summary, this review would pave the way for a better understanding of the biological functions of m6A-ncRNA crosstalk in cancer research and treatment.

7.
Oncogene ; 42(16): 1308-1320, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36882523

RESUMO

Glioblastoma (GBM) is the most common malignant glioma, with a high recurrence rate and a poor prognosis. However, the molecular mechanism behind the malignant progression of GBM is still unclear. In the present study, through the tandem mass tag (TMT)-based quantitative proteomic analysis of clinical primary and recurrent glioma samples, we identified that aberrant E3 ligase MAEA was expressed in recurrent samples. The results of bioinformatics analysis showed that the high expression of MAEA was related to the recurrence and poor prognosis of glioma and GBM. Functional studies showed that MAEA could promote proliferation, invasion, stemness and temozolomide (TMZ) resistance. Mechanistically, the data indicated that MAEA targeted prolyl hydroxylase domain 3 (PHD3) K159 to promote its K48-linked polyubiquitination and degradation, thus enhancing the stability of HIF-1α, thereby promoting the stemness and TMZ resistance of GBM cells through upregulating CD133. The in vivo experiments further confirmed that knocking down MAEA could inhibit the growth of GBM xenograft tumors. In summary, MAEA enhances the expression of HIF-1α/CD133 through the degradation of PHD3 and promotes the malignant progression of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/metabolismo , Recidiva Local de Neoplasia/metabolismo , Prolil Hidroxilases/metabolismo , Proteômica , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
Cancer Sci ; 114(2): 521-532, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36156329

RESUMO

Glioblastoma (GBM) is the most frequent and aggressive malignant glioma. Due to patients' poor prognosis, it is of great clinical significance to determine new targets that may improve GBM treatment. In the present study, we showed that ubiquitin (Ub)-conjugating enzyme E2T (UBE2T) was significantly overexpressed in GBM and could promote proliferation, invasion, and inhibit apoptosis of GBM cells. Mechanistically, UBE2T functioned as the Ub enzyme of ribosomal protein L6 (RPL6) and induced the ubiquitination and degradation of RPL6 in an E3 ligase-independent manner through direct modification by K48-linked polyubiquitination, thus contributing to the malignant progression of GBM cells. Furthermore, inhibiting the expression of RPL6 by UBE2T could not only reduce the expression of wild-type p53, but also enhance the gain-of-function of mutant p53. Moreover, knockdown of UBE2T in LN229 cells obviously suppressed tumor growth in LN229 xenograft mouse models. Collectively, our study demonstrated that UBE2T promotes GBM malignancy through ubiquitination-mediated degradation of RPL6 regardless of the p53 mutation status. It will provide new candidates for molecular biomarkers and therapeutic targets for clinical application in GBM.


Assuntos
Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Ubiquitinação , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
9.
Cancer Med ; 12(2): 1616-1629, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35770846

RESUMO

FAT4 is an extremely large atypical cadherin with crucial roles in the control of planar cell polarity (PCP) and regulation of the Hippo signaling pathway. Our study aims to clarify the FAT4 expression patterns, as well as the significance of FAT4 in predicting the prognosis and cancer immunity to non-small cell lung cancer (NSCLC). FAT4 mRNA and protein expressions were both underregulated in NSCLC and associated with poor prognosis in both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). In addition, overexpress FAT4 with jujuboside A (JUA) or knockdown FAT4 with siRNA regulated the metastasis of LUAD through MAPK pathways. Moreover, the FAT4 expression included multiple immunological components to promote an immunosuppressive tumor microenvironment (TME). Furthermore, a study of the TCGA-LUAD cohort's DNA methylation results showed that most FAT4 DNA CpG sites were typically hypermethylated in NSCLC relative to the normal lung tissue. The DNA CpG sites cg25879360 and cg26389756 of FAT4 were found to be strongly associated with FAT4 expression in LUAD through the correlation study. In conclusion, this is the first to report the potential function of FAT4 in NSCLC. Hence, FAT4 could be used as a promising prognostic and immunological biomarker for NSCLC.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Pulmão/patologia , Carcinoma de Células Escamosas/patologia , Prognóstico , Microambiente Tumoral/genética , Caderinas/genética , Proteínas Supressoras de Tumor
10.
Front Genet ; 13: 1038174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330439

RESUMO

As a key copper homeostasis-related molecule, lipoyltransferase 1 (LIPT1) is an essential enzyme for the activation of mitochondrial 2-ketoacid dehydrogenase, participating in fatty acylation. However, the biological significances of LIPT1 in the pan-cancer are unclear. Here, we comprehensively analyzed the functional characteristics of LIPT1 in human cancers and its roles in immune response. We found that LIPT1 was down-regulated in some cancers. And LIPT1 overexpression is associated with favorable prognosis in these patients, such as breast cancer, clear cell renal cell carcinoma, ovarian cancer and gastric cancer. We also explored the mutational status and methylation levels of LIPT1 in human cancers. Gene enrichment analysis indicated that abnormally expressed LIPT1 was significantly associated with immune cells infiltration, such as B cells, CD8+ T cells and cancer-associated fibroblast cells. The result from single cell sequencing reflected the important roles of LIPT1 in the regulation of several biological behaviors of cancer cells, such as DNA damage response and cell apoptosis. Taken together, our research could provide a comprehensive overview about the significances of LIPT1 in human pan-cancer progression, prognosis and immune.

11.
Aging (Albany NY) ; 14(19): 7926-7940, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36205594

RESUMO

Acyl-CoA synthetases (ACSs) are responsible for acyl-CoA synthesis from nonpolar hydrophilic fatty acids and play a vital role in many metabolic processes. As a category of ACS isozymes, members of ACS family (AACS, ACSF2-3, AASDH) participate in lipid metabolism; however, their expression patterns, regulatory mechanisms and effects in hepatocellular carcinoma (HCC) are poorly understood. Here, through evaluating the expression profiles of ACSF gene family, we found that upregulated AACS might be more significant and valuable in development and progression of HCC. Consequently, the mRNA expression levels of AACS and ACSF2 was accordantly increased in HCC. Kaplan-Meier plotter revealed that HCC patients with high level of AACS were highly related to a shorter overall survival time and relapse-free survival. Genetic alterations using cBioPortal revealed that the alteration rate of AACS were 5%. We also found that the functions of ACSF gene family were linked to several cancer-associated pathways, including long-term potentiation, phospholipase D signaling pathway and purine metabolism. TIMER database indicated that the AACS and ACSF2 had a strong relationship with the infiltration of six types of immune cells (macrophages, neutrophils, CD8+ T-cells, B-cells, CD4+ T-cells and dendritic cells). Next, Diseasemeth database revealed that the global methylation levels of ACSF2 was higher in HCC patients. In conclusion, this study firstly demonstrated that Acyl-CoA synthesis gene family, in particular, AACS, could be associated with immune microenvironment, thereby influencing the development and prognosis of patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfolipase D , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Isoenzimas/genética , Isoenzimas/metabolismo , Recidiva Local de Neoplasia , Prognóstico , Coenzima A Ligases/genética , Biomarcadores , RNA Mensageiro/metabolismo , Ácidos Graxos , Purinas , Coenzima A , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética
12.
J Oncol ; 2022: 4834791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199794

RESUMO

Exosome plays an important role in the occurrence and development of tumors, such as hepatocellular carcinoma (LIHC). However, the functions and mechanisms of exosome-associated molecules in LIHC are still underexplored. Here, we investigated the role of the exosome-related gene ENPP1 in LIHC. Comprehensive bioinformatics from multiple databases revealed that ENPP1 was significantly downregulated in LIHC tissues. The patients with downregulated ENPP1 displayed a poor prognosis. Immunohistochemistry (IHC) was used to further confirm the downregulated ENPP1 in LIHC tissues. In addition, the coexpression network of ENPP1 was also explored to understand its roles in the underlying signaling pathways, including fatty acid degradation and the PPAR signaling pathway. Simultaneously, GSEA analysis indicated the potential roles of ENPP1 in the lipid metabolism-associated signaling pathways in the pathogenesis of LIHC, including fatty acid metabolism, fatty acid synthesis, and so on. Finally, immunological analysis indicated that ENPP1 might also be involved in multiple immune-related features, including immunoinhibitors, immunostimulators, and chemokines. Taken together, these findings could enhance our understanding of ENPP1 in LIHC pathogenesis and immune response and provide a new target for ENPP1-related immunotherapy in clinical treatment.

13.
Front Genet ; 13: 943006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110213

RESUMO

The primary or acquired resistance to anti-VEGF inhibitors remains a common problem in cancer treatment. Therefore, identifying potential biomarkers enables a better understanding of the precise mechanism. Through the GEO database, three profiles associated with bevacizumab (BV) resistance to ovarian cancer, glioma, and non-small-cell lung carcinoma, respectively, were collected for the screening process, and two genes were found. A-kinase anchor protein 12 (AKAP12), one of these two genes, correlates with tumorigenesis of some cancers. However, the role of AKAP12 in pan-cancer remains poorly defined. The present study first systematically analyzed the association of AKAP12 with anti-VEGF inhibitors' sensitivity, clinical prognosis, DNA methylation, protein phosphorylation, and immune cell infiltration across various cancers via bioinformatic tools. We found that AKAP12 was upregulated in anti-VEGF therapy-resistant cancers, including ovarian cancer (OV), glioblastoma (GBM), lung cancer, and colorectal cancer (CRC). A high AKAP12 expression revealed dismal prognoses in OV, GBM, and CRC patients receiving anti-VEGF inhibitors. Moreover, AKAP12 expression was negatively correlated with cancer sensitivity towards anti-VEGF therapy. Clinical prognosis analysis showed that AKAP12 expression predicted worse prognoses of various cancer types encompassing colon adenocarcinoma (COAD), OV, GBM, and lung squamous cell carcinoma (LUSC). Gene mutation status may be a critical cause for the involvement of AKAP12 in resistance. Furthermore, lower expression of AKAP12 was detected in nearly all cancer types, and hypermethylation may explain its decreased expression. A decreased phosphorylation of T1760 was observed in breast cancer, clear-cell renal cell carcinoma, and lung adenocarcinoma. For the immunologic significance, AKAP12 was positively related to the abundance of pro-tumor cancer-associated fibroblasts (CAFs) in various types of cancer. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that "cell junction organization" and "MAPK pathway" participated in the effect of AKAP12. Importantly, we discovered that AKAP12 expression was greatly associated with metastasis of lung adenocarcinoma as well as differential and angiogenesis of retinoblastoma through investigating the single-cell sequencing data. Our study showed that the dual role of AKAP12 in various cancers and AKAP12 could serve as a biomarker of anti-VEGF resistance in OV, GBM, LUSC, and COAD.

14.
Aging (Albany NY) ; 14(17): 7038-7051, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36098688

RESUMO

Drug metabolism-associated genes have been clarified to play a vital role in the process of cancer cell growth and migration. Nevertheless, the correlation between drug metabolism-associated genes and gastric cancer (GC) has not been fully explored and clarified. This paper has focused on the role of aldehyde dehydrogenase 6 family member A1 (ALDH6A1), a drug metabolism-associated gene, in the immune regulation and prognosis of GC patients. Using several bioinformatics platforms and immunohistochemistry (IHC) assay, we found that ALDH6A1 expression was significantly down-regulated in GC tissues. Moreover, higher expression of ALDH6A1 was related to the better prognosis of GC patients. ALDH6A1 was also found to be involved in the regulation of several immune-associated signatures, including immunoinhibitors. In conclusion, the above results have concluded that aberrant expression of ALDH6A1 might be served as the promising predictor for prognosis and clinical immunotherapy response in GC patients.


Assuntos
Aldeído Oxirredutases/metabolismo , Neoplasias Gástricas , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade , Prognóstico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
15.
Front Bioeng Biotechnol ; 10: 806851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910024

RESUMO

B-Raf proto-oncogene serine/threonine-protein kinase (BRAF) is frequently altered in multiple cancer types, and BRAF V600 mutations act as a prime target for precision therapy. Although emerging evidence has investigated the role of BRAF, the comprehensive profiling of BRAF expression, alteration and clinical implications across various cancer types has not been reported. In this study, we used the TCGA dataset, covering 10,967 tumor samples across 32 cancer types, to analyze BRAF abnormal expression, DNA methylation, alterations (mutations and amplification/deletion), and their associations with patient survival. The results showed that BRAF expression, alteration frequency, mutation site distribution, and DNA methylation patterns varied tremendously among different cancer types. The expression of BRAF was found higher in PCPG and CHOL, and lower in TGCT and UCS compared to normal tissues. In terms of pathological stages, BRAF expression was significantly differentially expressed in COAD, KIRC, LUSC, and OV. The methylation levels of BRAF were significantly lower in LUSC, HNSC, and UCEC compared to normal tissue. The expression of BRAF and downstream gene (ETS2) was negatively correlated with methylation levels in various cancers. The overall somatic mutation frequency of BRAF was 7.7% for all cancer samples. Most fusion transcripts were found in THCA and SKCM with distinct fusion patterns. The majority of BRAF mutations were oncogenic and mainly distributed in the Pkinase_Tyr domain of THCA, SKCM, COADREAD, and LUAD. The BRAF mutations were divided into five levels according to the clinical targeted therapy implication. The results showed level 1 was mainly distributed in SKCM, COADREAD, and LUAD, while level 3B in THCA. The overall BRAF CNV frequency was about 42.7%, most of which was gain (75.9%), common in GBM, TGCT, and KIRP. In addition, the forest plot showed that increased BRAF expression was associated with poor patient overall survival in LIHC, OV, and UCEC. Taken together, this study provided a novel insight into the full alteration spectrum of BRAF and its implications for treatment and prognosis.

16.
Front Oncol ; 12: 952129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982953

RESUMO

Lipoic acid synthetase (LIAS) has been demonstrated to play a crucial role in the progression of cancer. Exploring the underlying mechanisms and biological functions of LIAS could have potential therapeutic guidance for cancer treatment. Our study has explored the expression levels and prognostic values of LIAS in pan-cancer through several bioinformatics platforms, including TIMER2.0, Gene Expression Profiling Interactive Analysis, version 2 (GEPIA2.0), and Human Protein Atlas (HPA). We found that a high LIAS expression was related to the good prognosis in patients with kidney renal clear cell carcinoma (KIRC), rectum adenocarcinoma (READ), breast cancer, and ovarian cancer. Inversely, a high LIAS expression showed unfavorable prognosis in lung cancer patients. In addition, the genetic alteration, methylation levels, and immune analysis of LIAS in pan-cancer have been evaluated. To elucidate the underlying molecular mechanism of LIAS, we conduct the single-cell sequencing to implicate that LIAS expression was related to hypoxia, angiogenesis, and DNA repair. Thus, these comprehensive pan-cancer analyses have conveyed that LIAS could be potentially significant in the progression of various cancers. Moreover, the LIAS expression could predict the efficacy of immunotherapy in cancer patients.

17.
Front Endocrinol (Lausanne) ; 13: 964362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034461

RESUMO

Pyroptosis is a cell death pathway that plays a significant role in lung adenocarcinoma (LUAD). Also, studies regarding the correlation between the expression of long non-coding RNAs (lncRNAs) and the mechanism of LUAD has aroused concern around the world. The purpose of this paper is to explore the underlying relationship of differentially expressed lncRNAs and pyroptosis-related genes. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression were applied to construct a prognostic risk score model from the TCGA database. A pyroptosis-related five-lncRNA signature (CRNDE, HHLA3, MIR193BHG, LINC00941, LINC01843) was considered to be correlated to the prognosis and immune response of LUAD patients. In addition, the cytological experiments revealed that aberrantly expressed HHLA3 displayed a proliferation promotion role in LUAD cells A549 and H460. Next, the forest and nomogram plots have shown this lncRNA signature could be served as an independent prognostic factor for LUAD. The ROC curves further identified the prognostic value of the five-lncRNA signature. The infiltration of immune cells, such as T cells CD8, T cells CD4 memory resting, T cells CD4 memory activated and M0 macrophages were greatly different between the high-risk group and the low-risk group. It implicated that the signature is significantly effective in immunotherapy of LUAD patients. This study has supplied a novel pyroptosis-related lncRNA signature and provided a predictive model for prognosis and immune response of LUAD patients.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , RNA Longo não Codificante , Biomarcadores Tumorais , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Pulmão , Prognóstico , Piroptose
18.
Aging (Albany NY) ; 14(14): 5946-5958, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907206

RESUMO

Receptor interacting protein kinases (RIPKs) are a family of serine/threonine kinases which are supposed to regulate tumor generation and progression. Rare study illustrates the roles and functions of RIPKs family in lung adenocarcinoma (LUAD) comprehensively. Our results indicated that the expression of RIPK2 higher in LUAD patients while RIPK5 (encoded by gene DSTYK) expression was lower. Only RIPK2 had a strong correlation with pathological stage in LUAD patients. Kaplan-Meier plotter revealed that LUAD patients with low RIPK2 or RIPK3 level showed better overall survival (OS), but worse when LUAD patients with high RIPK5. Further, lower expression of RIPK2 and higher expression of RIPK1, RIPK4 and RIPK5 prompted a longer disease free survival (DFS). Genetic alterations based on cBioPortal revealing 16% alteration rates of RIPK2, as well as RIPK5. We also found that the functions of RIPKs family were linked to cellular senescence, protein serine/threonine kinase activity, apoptosis process et al. TIMER database indicated that the RIPKs family members had distinct relationships with the infiltration of six types of immune cells (macrophages, neutrophils, CD8+ T-cells, B-cells, CD4+ T-cells and dendritic cells). Moreover, RIPK2 could be observed as an independent prognostic factor with Cox proportional hazard model analysis. DiseaseMeth databases revealed that the global methylation levels of RIPK2 increased in LUAD patients. Thus, the findings above will enhance the understanding of RIPKs family in LUAD pathology and progression, providing novel insights into RIPKs-core therapy for LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Intervalo Livre de Doença , Humanos , Neoplasias Pulmonares/patologia , Prognóstico , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serina
19.
Front Cell Dev Biol ; 10: 877254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756990

RESUMO

Background: The different pharmacological effects of drugs in different people can be explained by the polymorphisms of drug metabolism-related genes. Emerging studies have realized the importance of drug metabolism-related genes in the treatment and prognosis of cancers, including ovarian cancer (OV). In this study, using comprehensive bioinformatics and western blot, we identified that the drug metabolism-related gene, ADH1B, was significantly down-regulated in OV cells and tissues. The patients with a high level of ADH1B presented a good prognosis. We also found a negative correlation between ADH1B expression and the activity of chemotherapeutic agents, such as cyclophosphamide. In addition, positive correlations were observed between ADH1B expression and multiple immune checkpoints, including LAG3 and HAVCR2. The immune infiltration analysis further indicated that aberrantly expressed ADH1B might have important roles in regulating the infiltration of macrophages and neutrophils in OV tissues. Then, the co-expression analysis was conducted and the top three enriched KEGG pathways were spliceosome, RNA transport, and DNA replication. In conclusion, the drug metabolism-related gene ADH1B and its interactive network play an essential role in the immune regulation and therapeutic response and maybe identified as promising therapeutic targets for OV patients.

20.
Front Med (Lausanne) ; 9: 882763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646948

RESUMO

Pyroptosis, characterized as an inflammasome-mediated cell death pathway, may be participated in tumorigenesis and progression. However, the underlying molecular function and mechanism of pyroptosis in BRCA remain unclear. In our study, we aimed to develop a prognostic signature in BRCA based on pyroptosis-associated genes. Data was downloaded from TCGA database, and then we screened 760 female BRCA samples and 104 normal breast tissues as the training set. Seven pyroptosis-related genes (CASP9, GPX4, IL18, NLRC4, SCAF11, TIRAP, and TNF) were identified as the pyroptosis-related prognostic model for BRCA using LASSO Cox regression. We subsequently tested the prognostic value of pyroptosis-associated gene signature in a validation set, GSE 20685. Time-dependent receiver operating characteristic analysis demonstrated the credible predictive capacity of this pyroptosis-associated gene signature. The area under the curves were 0.806 at 3 years, 0.787 at 5 years, 0.775 at 8 years, and 0.793 at 10 years in the training set, and 0.824 at 5 years, 0.808 at 8 years, and 0.790 at 10 years in the validation set. Furthermore, there are currently few data on SCAF11 regulating pyroptosis. To clarify this issue, we performed integrative bioinformatics and experimental analysis. Knocking down SCAF11 possessed an anti-cancer effect in terms of inhibiting cell viability and suppressing colony-formation in in-vitro functional assays. Meanwhile, the biological functions of SCAF11 in BRCA were further validated with several algorithms, such as Xiantao tool, LinkedOmics, GEPIA2, and TISIDB. These findings indicated that the expression of SCAF11 was significantly correlated with diverse tumor-infiltrating lymphocytes (TILs), including T central memory cell (Tcm), and type 2 T helper cell (Th2), etc. Functional enrichment analysis suggested that co-expression genes of SCAF11 primarily participated in inflammation and immune-related signaling pathways, such as oxidative phosphorylation, antimicrobial humoral response, and immunoglobulin complex. Moreover, SCAF11 expression was positively correlated with several immune checkpoints, including PD-L1, B7H3, and PDCD1LG2. Taken together, this study uncovered that pyroptosis-associated gene signature might be applied as an effective independent predictor in patients with BRCA. The pyroptosis-related gene SCAF11 might play potential roles in the regulation of immune microenvironment in BRCA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA