Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MAbs ; 15(1): 2292305, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38095560

RESUMO

Pharmaceutical companies have recently focused on accelerating the timeline for initiating first-in-human (FIH) trials to allow quick assessment of biologic drugs. For example, a stable cell pool can be used to produce materials for the toxicology (Tox) study, reducing time to the clinic by 4-5 months. During the coronavirus disease 2019 (COVID-19) pandemic, the anti-COVID drugs timeline from DNA transfection to the clinical stage was decreased to 6 months using a stable pool to generate a clinical drug substrate (DS) with limited stability, virus clearance, and Tox study package. However, a lean chemistry, manufacturing, and controls (CMC) package raises safety and comparability risks and may leave extra work in the late-stage development and commercialization phase. In addition, whether these accelerated COVID-19 drug development strategies can be applied to non-COVID projects and established as a standard practice in biologics development is uncertain. Here, we present a case study of a novel anti-tumor drug in which application of "fast-to-FIH" approaches in combination with BeiGene's de-risk strategy achieved successful delivery of a complete CMC package within 10 months. A comprehensive comparability study demonstrated that the DS generated from a stable pool and a single-cell-derived master cell bank were highly comparable with regards to process performance, product quality, and potency. This accomplishment can be a blueprint for non-COVID drug programs that approach the pace of drug development during the pandemic, with no adverse impact on the safety, quality, and late-stage development of biologics.


Assuntos
Antineoplásicos , Produtos Biológicos , COVID-19 , Humanos , Anticorpos Monoclonais , Preparações Farmacêuticas , Antineoplásicos/uso terapêutico
2.
J Biotechnol ; 260: 18-30, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28867483

RESUMO

Interactions between protein ligands and receptors play crucial roles in cell-cell signalling. Most of the human cell surface receptors have been identified in the post-Human Genome Project era but many of their corresponding ligands remain unknown. To facilitate the pairing of orphan receptors, 2762 sequences encoding all human single-pass transmembrane proteins were selected for inclusion into a mammalian-cell expression library. This expression library, consisting of all the individual extracellular domains (ECDs), was constructed as a Fab fusion for each protein. In this format, individual ECD can be produced as a soluble protein or displayed on cell surface, depending on the applied heavy-chain Fab configuration. The unique design of the Fab fusion concept used in the library led to not only superior success rate of protein production, but also versatile applications in various high-throughput screening paradigms including protein-protein binding assays as well as cell binding assays, which were not possible for any other existing expression libraries. The protein library was screened against human coagulation factor VIIa (FVIIa), an approved therapeutic for the treatment of hemophilia, for binding partners by AlphaScreen and ForteBio assays. Two previously known physiological ligands of FVIIa, tissue factor (TF) and endothelial protein C receptor (EPCR) were identified by both assays. The cell surface displayed library was screened against V-domain Ig suppressor of T-cell activation (VISTA), an important immune-checkpoint regulator. Immunoglobulin superfamily member 11 (IgSF11), a potential target for cancer immunotherapy, was identified as a new and previously undescribed binding partner for VISTA. The specificity of the binding was confirmed and validated by both fluorescence-activated cell sorting (FACS) and surface plasmon resonance (SPR) assays in different experimental setups.


Assuntos
Proteínas de Membrana , Biblioteca de Peptídeos , Receptores de Superfície Celular , Proteínas Recombinantes de Fusão , Clonagem Molecular , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA