Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Exp Med ; 24(1): 195, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167309

RESUMO

OBJECTIVES: There is currently no evidence documenting the clinical characteristics and prognosis of non-high-risk patients with incidental stage T1 lung cancer (LC). The aim of this study was to investigate the clinical characteristics and prognosis of non-high-risk patients with incidental stage T1 LC. METHODS: This prospective cohort study included patients with incidental stage T1 LC who were diagnosed pathologically at the First Affiliated Hospital of Chongqing Medical University between 1st Jan 2019 and 31st Dec 2023. The follow-up time for all participants concluded on 31st Jan 2024, or upon death. All included patients were divided into non-high-risk (observation) and high-risk (control) groups based on the 2021 US preventative services task force recommendations. The primary outcomes were overall survival probability and LC-specific survival probability. The secondary outcomes were clinical characteristics, including demographic variables, histological types and TNM staging. RESULTS: We studied 1876 patients with incidental stage T1 LC. Of these, 1491 (79.48%) non-high-risk patients were included in the observation group, and the remaining 385 (20.52%) high-risk patients composed the control group. The follow-up interval was between 0 and 248 months for all participants, with a median time of 41.64 ± 23.85 months. The patients in the observation group were younger and had smaller tumors, more adenocarcinomas, and earlier disease stages than those in the control group (p ≤ 0.001). The overall survival probability (HR = 0.23, [95% CI: 0.18, 0.31], p < 0.001) and the LC-specific survival probability (HR = 0.23, [95% CI: 0.17, 0.31], p < 0.001) for the patients in the observation group were also both higher than those in the control group. The results appeared to be consistent across important subgroups. CONCLUSION: In this study, non-high-risk patients with incidental stage T1 LC were younger, had smaller tumors, had more adenocarcinomas, had a lower probability of metastasis, and had longer survival than did high-risk patients.


Assuntos
Neoplasias Pulmonares , Estadiamento de Neoplasias , Humanos , Masculino , Feminino , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Estudos Prospectivos , Pessoa de Meia-Idade , Idoso , Prognóstico , Achados Incidentais , Análise de Sobrevida , Adulto , Idoso de 80 Anos ou mais , Fatores de Risco
2.
Cell Signal ; 120: 111197, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38697447

RESUMO

OBJECTIVES: The clinical T1 stage solid lung cancer with metastasis is a serious threat to human life and health. In this study, we performed RNA sequencing on T1 advanced-stage lung cancer and adjacent tissues to identify a novel biomarker and explore its roles in lung cancer. METHODS: Quantitative reversed-transcription PCR, reverse transcription PCR and Western blot, MSP and Methtarget were utilized to evaluate FIBIN expression levels at both the transcriptional and protein levels as well as its methylation status. Differential target protein was evaluated for relative and absolute quantitation by isobaric tags. Co-IP was performed to detect the interactions between target protein. Precise location and expression levels of target proteins were revealed by immunofluorescence staining and component protein extraction using specific kits, respectively. RESULTS: We reported that FIBIN was frequently silenced due to promoter hypermethylation in lung cancer. Additionally, both in vitro and in vivo experiments confirmed the significant anti-proliferation and anti-metastasis capabilities of FIBIN. Mechanistically, FIBIN decreased the nuclear accumulation of ß-catenin by reducing the binding activity of GSK3ß with ANXA2 while promoting interaction between GSK3ß and ß-catenin. CONCLUSION: Our findings firstly identify FIBIN is a tumor suppressor, frequently silenced due to promoter hypermethylation. FIBIN may serve as a predictive biomarker for progression or metastasis among early-stage lung cancer patients.


Assuntos
Anexina A2 , Carcinoma Pulmonar de Células não Pequenas , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Anexina A2/metabolismo , Anexina A2/genética , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Nus , Metástase Neoplásica , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Regiões Promotoras Genéticas/genética , Feminino , Camundongos Endogâmicos BALB C , Células A549 , Movimento Celular
3.
Immun Inflamm Dis ; 12(4): e1237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577984

RESUMO

BACKGROUND: Severe myocarditis is often accompanied by cardiac fibrosis, but the underlying mechanism has not been fully elucidated. CXCL4 is a chemokine that has been reported to have pro-inflammatory and profibrotic functions. The exact role of CXCL4 in cardiac fibrosis remains unclear. METHODS: Viral myocarditis (VMC) models were induced by intraperitoneal injection of Coxsackie B Type 3 (CVB3). In vivo, CVB3 (100 TCID50) and CVB3-AMG487 (CVB3: 100 TCID50; AMG487: 5 mg/kg) combination were administered in the VMC and VMC+AMG487 groups, respectively. Hematoxylin and eosin staining, severity score, Masson staining, and immunofluorescence staining were performed to measure myocardial morphology in VMC. Enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were performed to quantify inflammatory factors (IL-1ß, IL-6, TNF-α, and CXCL4). Aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and creatine kinase-myocardial band (CK-MB) levels were analyzed by commercial kits. CXCL4, CXCR3B, α-SMA, TGF-ß1, Collagen I, and Collagen III were determined by Western blot and immunofluorescence staining. RESULTS: In vivo, CVB3-AMG487 reduced cardiac injury, α-SMA, Collagen I and Collagen III levels, and collagen deposition in VMC+AMG487 group. Additionally, compared with VMC group, VMC+AMG group decreased the levels of inflammatory factors (IL-1ß, IL-6, and TNF-α). In vitro, CXCL4/CXCR3B axis activation TGF-ß1/Smad2/3 pathway promote mice cardiac fibroblasts differentiation. CONCLUSION: CXCL4 acts as a profibrotic factor in TGF-ß1/Smad2/3 pathway-induced cardiac fibroblast activation and ECM synthesis, and eventually progresses to cardiac fibrosis. Therefore, our findings revealed the role of CXCL4 in VMC and unveiled its underlying mechanism. CXCL4 appears to be a potential target for the treatment of VMC.


Assuntos
Acetamidas , Infecções por Coxsackievirus , Miocardite , Pirimidinonas , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa , Interleucina-6 , Colágeno , Fibrose
5.
Biochem Biophys Res Commun ; 664: 108-116, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141638

RESUMO

Pancreatic cancer is an extremely aggressive malignancy with a very disappointing prognosis. Neuroglobin (NGB), a member of the globin family, has been demonstrated to have a significant role in a variety of tumor forms. The possible role of NGB as a tumor suppressor gene in pancreatic cancer was investigated in this work. Information from the public dataset TCGA combined with GTEx was used to analyze the finding that NGB was commonly downregulated in pancreatic cancer cell lines and tissues, correlating with patient age and prognosis. The expression of NGB in pancreatic cancer was investigated via RT-PCR, qRT-PCR, and Western blot experiments. In-vitro and in-vivo assays, NGB elicited cell cycle arrest in the S phase and apoptosis, hindered migration and invasion, reversed the EMT process, and suppressed cell proliferation and development. The mechanism of action of NGB was predicted via bioinformatics analysis and validated using Western blot and co-IP experiments revealed that NGB inhibited the EGFR/AKT/ERK pathway by binding to and reducing expression of GNAI1 and p-EGFR. In addition, pancreatic cancer cells overexpressing NGB showed increased drug sensitivity to gefitinib (EGFR-TKI). In conclusion, NGB inhibits pancreatic cancer progression by specifically targeting the GNAI1/EGFR/AKT/ERK signaling axis.


Assuntos
Neuroglobina , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Int J Biol Sci ; 18(8): 3178-3193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35637950

RESUMO

Mesangioproliferative glomerulonephritis (MsPGN) is a common human kidney disease. Rat Thy-1 nephritis (Thy-1N) is an animal model widely used for the study of MsPGN. Thy-1N is not only sublytic C5b-9-dependent, but also related to pro-inflammatory cytokine production and macrophage (Mφ) accumulation in rat renal tissues. In this study, we found that the expression or phosphorylation of chemokine CCL3/4, CD68 (Mφ marker), IRF-8, PKC-α and NF-κB-p65 (p65) were all up-regulated both in the renal tissues of Thy-1N rats (in vivo) and in the glomerular mesangial cells (GMCs) upon sublytic C5b-9 stimulation (in vitro). Further experiments in vitro revealed that the phosphorylated PKC-α (p-PKC-α) could promote p65 phosphorylation, and then p-p65 enhanced IRF-8 expression through binding to IRF-8 promotor (-591 ~ -582 nt and -299 ~ -290 nt). Additionally, up-regulation or silencing of IRF-8 gene promoted or reduced CCL3/4 production, and then regulated Mφ chemotaxis. The underlying mechanism involved in IRF-8 binding to CCL3 promoter (-249 ~ -236 nt), which resulted in CCL3 gene transcription. The experiments in vivo showed that knockdown of renal PKC-α, p65, IRF-8 and CCL3/4 genes could inhibit CCL3/4 production, Mφ accumulation, GMC proliferation and proteinuria of Thy-1N rats. Furthermore, p-PKC-α, p-p65, IRF-8, CCL3/4 expression and Mφ accumulation were also increased in the renal tissues of MsPGN patients. Collectively, these findings indicate that sublytic C5b-9 induces CCL3/4 production and Mφ accumulation via PKC-α/p65/IRF-8 axis, and finally aggravates the pathological changes of MsPGN.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento , Glomerulonefrite , Macrófagos , Animais , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Humanos , Fatores Reguladores de Interferon/metabolismo , Macrófagos/metabolismo , Proteína Quinase C-alfa/metabolismo , Ratos , Fator de Transcrição RelA/metabolismo
7.
Epigenomics ; 12(20): 1793-1810, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33016107

RESUMO

Aim: To explore the biological functions and clinical significance of CAVIN2 in lung cancer. Materials & methods: Methylation-specific PCR was used to measure promoter methylation of CAVIN2. The function of CAVIN2 was tested by Cell Counting Kit-8, colony formation, Transwell, flow cytometric analysis, acridine orange/ethidium bromide, chemosensitivity assay and xenograft assay. Results: CAVIN2 is significantly downregulated by promoter methylation in lung cancer. CAVIN2 overexpression inhibits lung cancer cell migration and invasion. Furthermore, ectopic expression of CAVIN2 inhibits cell proliferation in vivo and in vitro by inducing G2/M cell cycle arrest, which sensitizes the chemosensitivity of lung cancer cells to paclitaxel and 5-fluorouracil, but not cisplatin. Conclusion: CAVIN2 is a tumor suppressor in non-small-cell lung cancer and can sensitize lung cancer cells to paclitaxel and 5-fluorouracil.


Assuntos
Antineoplásicos/uso terapêutico , Metilação de DNA , Fluoruracila/uso terapêutico , Inativação Gênica , Neoplasias Pulmonares/genética , Paclitaxel/uso terapêutico , Proteínas de Ligação a Fosfato/genética , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ilhas de CpG , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Camundongos Nus , Invasividade Neoplásica , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/fisiologia , Regiões Promotoras Genéticas
8.
Clin Epigenetics ; 12(1): 41, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138771

RESUMO

BACKGROUND: Nasopharyngeal carcinoma tends to present at an advanced stage because the primary anatomic site is located in a less visible area and its clinical symptoms are nonspecific. Prognosis of advanced nasopharyngeal carcinoma cases remains disappointing. SEPT9 is a methylation-based biomarker approved by the US Food and Drug Administration for colorectal cancer screening and diagnosis. Interestingly, downregulation of SEPT9, especially SEPT9_v2, mediated by promoter hypermethylation has been also detected in head and neck squamous cell carcinoma than in head and neck squamous epithelium, while other SEPT9 variants did not. These reasons above indicate a crucial role of SEPT9_v2 in cancer progression. Therefore, we address the methylation status of SEPT9_v2 in nasopharyngeal carcinoma and explore the role of SEPT9_v2 in nasopharyngeal carcinoma proliferation and cancer progression. RESULTS: SEPT9_v2 expression was found to be downregulated via promoter methylation in nasopharyngeal carcinoma cell lines and tissues. Ectopic expression of SEPT9_v2 induced G0/G1 cell cycle arrest and apoptosis, which exerted an inhibitory effect in cell proliferation and colony formation. Additionally, nasopharyngeal carcinoma cell migration and invasion were shown to be inhibited by SEPT9_v2. Furthermore, our data suggested that SEPT9_v2 inhibits proliferation and migration of nasopharyngeal carcinoma cells through inactivation of the Wnt/ß-catenin signaling pathway via miR92b-3p/FZD10. CONCLUSIONS: This study delineates SEPT9_v2, frequently silenced by promoter hypermethylation, exerts anti-tumor functions through inactivation of the Wnt/ß-catenin signaling pathway via miR92b-3p/FZD10 in nasopharyngeal carcinoma cells and, hence, SEPT9_v2 may be a promising therapeutic target and biomarker for nasopharyngeal carcinoma.


Assuntos
Metilação de DNA , Receptores Frizzled/genética , MicroRNAs/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Septinas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Variação Genética , Humanos , Regiões Promotoras Genéticas , Análise de Sequência de RNA , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA