Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(11): 1509-1522, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37082943

RESUMO

Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCß/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCß, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCß/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Proteína Quinase C-alfa , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/patologia , Movimento Celular , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Linhagem Celular Tumoral , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo
2.
Biochim Biophys Acta ; 1828(8): 1794-801, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23562405

RESUMO

Recently, the structure-function relationships between amphotericin B (AmB) and ergosterol have been solved using synthetic techniques that require a mycosamine-mediated direct binding interaction between AmB and ergosterol to form AmB ion channels. However, studies to directly probe the AmB-induced membrane permeability changes have not been conducted. In the present work, we investigate the following fundamental question: does AmB induce concentration- and time-dependent permeability changes across ergosterol-containing membranes? Herein, we employ fluorescent dyes of known average diameter to quantify the diameters of AmB ion channels. In addition, we take a single-particle tracking approach to define the intracellular microrheology in the absence and presence of AmB ion channels. Present results show that increasing AmB concentration tends to increase the preferential accumulation of AmB ion channels in the presence of the excess membrane-embedded ergosterol. We found that AmB induces time-dependent membrane permeability; increases approaching 50% in both the velocity fluctuations and diffusion coefficients of vesicles occur on the same time scale as the efflux of potassium ions (≅30min). Furthermore, we propose a two-dimensional, semi-regular tessellation model to geometrically assess the pore size of the AmB ion channels in response to the AmB dose. This approach offers one possibility for the design of AmB ion channels with tunable aqueous pore size, which could provide an opportunity to replace damaged membrane water channels of the aquaporin family in future applications.


Assuntos
Anfotericina B/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Canais Iônicos/metabolismo , Polyporaceae/química , Potássio/metabolismo , Água/metabolismo , Neoplasias do Colo/tratamento farmacológico , Humanos , Polyporaceae/metabolismo , Reologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA