Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 324: 117756, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38218503

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Wenzhong Bushen Formula (WZBSF) is a traditional Chinese medicine empirical formula known for its effects in tonifying qi, strengthening the spleen, warming the kidneys, promoting yang, regulating blood circulation, and balancing menstruation. Clinical evidence has demonstrated its significant efficacy in treating Diminished Ovarian Reserve (DOR) by improving ovarian reserves. However, the specific pharmacological mechanisms of WZBSF remain unclear. AIM OF THE STUDY: This study aims to investigate the mechanisms by which WZBSF improves ovarian reserve decline through network pharmacology and animal experiments. METHODS AND MATERIALS: WZBSF was analyzed using a dual UPLC-MS/MS and GC-MS platform. Effective components and targets of WZBSF were obtained from the TCMSP database and standardized using UniProt. Disease targets were collected from GeneCard, OMIM, PHARMGKB, and DisGeNET databases, with cross-referencing between the two sets of targets. A PPI protein interaction network was constructed using Cytoscape3.9.1 and STRING database, followed by KEGG and GO enrichment analysis using the Metascape database. Finally, an ovarian reserve decline model was established in mice, different doses of WZBSF were administered, and experimental validation was conducted through serum hormone detection, H&E staining, immunofluorescence (IF), immunohistochemistry (IHC), and Western blot analysis (WB). RESULTS: WZBSF shares 145 common targets with ovarian reserve decline. GO enrichment analysis revealed involvement in biological processes such as response to hormone stimulation and phosphatase binding, while KEGG analysis implicated pathways including the PI3K-AKT signaling pathway and FoxO signaling pathway. In mice with ovarian reserve decline, WZBSF restored weight gain rate, increased ovarian index, normalized estrous cycles, reversed serum hormone imbalances, restored various follicle counts, and improved ovarian morphology. Additionally, WZBSF reduced p-AKT and p-FOXO3a levels, preventing excessive activation of primordial follicles and maintaining ovarian reserve. CONCLUSION: WZBSF can ameliorate cyclophosphamide and busulfan-induced ovarian reserve decline, and its mechanism may be associated with the inhibition of the PI3K/AKT/FOXO3a signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Reserva Ovariana , Feminino , Animais , Camundongos , Farmacologia em Rede , Cromatografia Líquida , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Hormônios , Simulação de Acoplamento Molecular
2.
J Ethnopharmacol ; 317: 116738, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37369336

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A traditional Chinese medicine experience compound known as Yipibushen (YPBS) decoction stimulates qi and nourishes yin, stimulates the kidney and solid essence, dissolves phlegm and eliminates stasis. YPBS decoction has proven to be successful in treating obese type 2 diabetes mellitus with oligoasthenotspermia in clinical settings. Nevertheless, the pharmacological mechanism is not understood. AIM OF THE STUDY: Investigating the mechanism of action of YPBS decoction in enhancing the obese type 2 diabetes mellitus with oligoasthenotspermia involved network pharmacology and animal validation techniques. METHODS AND MATERIALS: The YPBS Decoction' active components were found in the TCMSP database and their targets were identified using UniProtKB. Additionally, targets for the obese type 2 diabetes mellitus with oligoasthenotspermia were found in the GeneCard, DisGeNet, TTD and OMIM databases. The intersection of active ingredients, the obese type 2 diabetes mellitus with oligoasthenotspermia was chosen as the intersection target. The protein-protein interaction (PPI) network of the intersection target was built with the aid of Cytoscape 3.9.1, the core target of PPI was obtained through software analysis in R-project, GO enrichment and KEGG enrichment analysis was carried out on the core target. Finally, animal experiments were used to verify the intersection target. RESULTS: The research revealed 74 intersection targets of YPBS decoction active ingredients in the obese type 2 diabetes mellitus with oligoasthenotspermia. There were also 18 PPI core targets, GO enrichment analysis of PPI core targets involving response to oxidative stress, membrane raft, DNA-binding transcription regulator complex and other biological processes; KEGG involving endocrine resistance, PI3K/AKT signaling pathway, apoptosis and other signal pathways. In the obese type 2 diabetes mellitus with oligoasthenotspermia mice, animal studies have shown that YPBS decoction group could decrease blood glucose levels and improve insulin resistance; improve testicular function, enhance sperm count, sperm motility, sperm viability, and decrease the malformation rate. It could increase the levels of T-SOD and GSH-Px, and decrease the MDA level. In addition to this, it could improve the amount of testosterone hormone, and enhance the expression of PI3K, p-AKT and Bcl-2. CONCLUSION: By controlling the degree of oxidative stress and the PI3K/AKT/Bcl-2 pathway, YPBS decoction may enhance the obese type 2 diabetes mellitus with Oligoasthenotspermia, provide a scientific basis for clinical diagnosis and therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Masculino , Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sêmen , Motilidade dos Espermatozoides , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
3.
Front Endocrinol (Lausanne) ; 14: 1070264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755918

RESUMO

Background and objective: PCOS is a common metabolic disorder in women of reproductive age, which pathogenesis is very complex. The role of ferroptosis in PCOS is a novel finding, and the mechanistic studies are not clear. Metformin is a commonly used drug of PCOS but few studies on whether metformin can improve the follicle development and ovarian function in PCOS. We aims to use PCOS mouse model to study the effect of metformin on PCOS based on the ovarian function and explored the regulation of metformin in PCOS mice by intervening in ferroptosis pathway. Materials and methods: C57 BL/6J female mice aged 4-5 weeks were purchased and gavaged with letrozole (1 mg/kg/day) combined with high-fat diet for 21days to establish PCOS model, and control group was set up. After modeling, the mice were divided into PCOS model group and metformin treatment group (Met) (n=6).The Met group were gavaged metformin (200 mg/kg/day) for 28 days. The body weight, estrous cycle, glucose tolerance test (OGTT)and insulin resistance test (ITT) were monitored. Then, The mice were euthanized to collect serum and ovaries. Elisa was used to detect changes in related serum hormones (E2, LH, FSH, TP). Ovaries used for molecular biology experiments to detect changes in GPX4, SIRT3, AMPK/p-AMPK, and mTOR/p-mTOR by Western blot and qPCR. Results: Compared with the model group mice, body weight was significantly reduced, and their estrous cycle was restored in Met group. The results of OGTT and ITT showed an improvment of glucose tolerance and insulin resistance. Morphological results showed that after metformin treatment, polycystic lesions in ovaries were reduced, the ovarian function was restored, and the expressions of SIRT3 and GPX4 were elevated. WB results demonstrated that the expressions of p-mTOR and p-AMPK in ovaries were significantly reduced in Model group, but reversed in MET group. Conclusion: Our study confirmed metformin could not only improve body weight and metabolism disorders, but also improve ovarian dysfunction in PCOS mice.In addition, we explored metformin could regulate ferroptosis to improve PCOS via the SIRT3/AMPK/mTOR pathway. Our study complements the mechanisms by which metformin improves PCOS.


Assuntos
Ferroptose , Resistência à Insulina , Metformina , Síndrome do Ovário Policístico , Sirtuína 3 , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Peso Corporal , Serina-Treonina Quinases TOR
4.
Urology ; 167: 82-89, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654272

RESUMO

OBJECTIVE: To compare the effects of periurethral and intravenous injection of adipose-derived stem cells (ADSCs) on voiding function and tissue recovery in a stress urinary incontinence (SUI) rat model. METHODS: Sixty-four postpartum rats were randomly allocated to a normal group and the SUI model was established in 48 rats by vagina balloon dilation and bilateral ovariectomy. The SUI rats were randomized into 3 groups and received urethral injection of PBS (SUI group), periurethral injection of ADSCs (PU group), and intravenous injection of ADSCs (IV group) in 10 days after the ovariectomy. After 1, 7, and 14 days, ADSCs were tracked in urethra specimen. The urinary function of the remaining rats was analyzed at day 28, and urethral tissues were harvested for Western blotting and histochemical analyses. RESULTS: Alpha smooth muscle actin, myosin heavy chain, vascular endothelial growth factor, and neurofilament protein expression was increased in the IV and PU groups. Voiding function was also improved, with no significant differences between the IV and PU groups. The cell retention rate in rat urethral tissues was higher in the PU group than that in the IV group. Compared with the IV group, myosin heavy chain, vascular endothelial growth factor, neurofilament and transforming growth factor-ß1 (TGF-ß1)/Smad pathway protein expression levels were significantly higher in the PU group, while alpha smooth muscle actin expression was significantly lower (P < .05). CONCLUSION: Periurethral and intravenous injection of ADSCs induces different degrees of recovery of the urethral sphincter, cytokine secretion levels and cell retention rates in the urethral tissues in SUI rats, however, there was no significant difference in 2 methods.


Assuntos
Incontinência Urinária por Estresse , Actinas/metabolismo , Animais , Feminino , Injeções Intravenosas , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/farmacologia , Proteínas de Neurofilamentos/metabolismo , Proteínas de Neurofilamentos/farmacologia , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Uretra , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Sci Rep ; 11(1): 2504, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510228

RESUMO

Sulforaphane (SFN) extracted from broccoli sprout has previously been investigated for its potential properties in cancers, however, the underlying mechanisms of the anticancer activity of SFN remain not fully understood. In the present study, we investigate the effects of SFN on cell proliferation, cell cycle, cell apoptosis, and also the expression of several cell cycle and apoptosis-related genes by MTT assay, flow cytometry and western blot analysis in gastric cancer (GC) cells. The results showed that SFN could impair the colony-forming ability in BGC-823 and MGC-803 cell lines compared with the control. In addition, SFN significantly suppressed cell proliferation by arresting the cell cycle at the S phase and enhancing cell apoptosis in GC cells in a dose-dependent manner. Western blot results showed that SFN treatment significantly increased the expression levels of p53, p21 and decreased CDK2 expression, which directly regulated the S phase transition. The Bax and cleaved-caspase-3 genes involved in apoptosis executive functions were significantly increased in a dose-dependent manner in BGC-823 and MGC-803 cells. These results suggested that SFN-induced S phase cell cycle arrest and apoptosis through p53-dependent manner in GC cells, which suggested that SFN has a potential therapeutic application in the treatment and prevention of GC.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Isotiocianatos/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Sulfóxidos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Apoptose/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Pontos de Checagem da Fase S do Ciclo Celular/genética , Neoplasias Gástricas , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA