Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6466-6475, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604893

RESUMO

The present study aimed to explore the targets and mechanism of Mailuo Shutong Pills(MSP) in the treatment of ischemic stroke by network pharmacology, and verify the key targets through molecular docking and animal experiment, so as to provide a theoretical basis for the clinical application of MSP. The main chemical ingredients of MSP were obtained by searching against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and relevant literature. The potential targets of the ingredients of MSP in treating ischemic stroke were obtained from SwissTargetPrediction and DisGeNET. Protein-protein interaction(PPI) network was analyzed in STRING and plotted in Cytoscape. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were carried out with DAVID. Molecular docking was simulated to determine the binding activity of active ingredients to key targets in AutoDock Vina. The mouse model of ischemic stroke was established. The mice were classified into a sham group, a model group, and an MSP group. After the administration, cerebral infarction volume was detected by 2,3,5-triphenyltetrazoliumchloride(TTC) staining, and Western blot was performed to determine the levels of phosphatidylinositol 3-kinase(PI3 K), protein kinase B(AKT), nuclear factor-κB(NF-κB) and their phosphorylated proteins. A total of 222 ingredients of MSP were screened out, including beta-sitosterol, quercetin, licochalcone B, and lupiwighteone, which acted on 701 targets. Totally 1 079 targets associated with ischemic stroke were retrieved, among which 192 common targets were shared by MSP and ischemic stroke. The key targets included AKT1, phosphatidylinositol 3-kinase catalytic subunit alpha(PIK3 CA), phosphatidylinositol 3-kinase regulatory subunit 1(PIK3 R1), and nuclear factor-κB p65 subunit(RELA), which were mainly involved in PI3 K/AKT, tumor necrosis factor(TNF), and NF-κB signaling pathways. The results of molecular docking revealed that PI3 K, AKT1, and RELA had good binding ability to the active ingredients of MSP. The animal experiment results showed that compared with the model group, MSP decreased cerebral infarction volume, down-regulated the expression of p-NF-κB, and up-regulated the expression of p-PI3 K and p-AKT in mouse brain. In summary, the active ingredients in MSP may treat cerebral injury by activating PI3 K/AKT signaling pathway and inhibiting NF-κB signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , AVC Isquêmico , Animais , Camundongos , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-akt/genética , AVC Isquêmico/tratamento farmacológico , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/genética , Infarto Cerebral , Medicamentos de Ervas Chinesas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA