Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 9: uhac088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685222

RESUMO

Iron-deficiency chlorosis is a common nutritional disorder in crops grown on alkaline or calcareous soils. Although the acclimation mechanism to iron deficiency has been investigated, the genetic regulation of iron acquisition is still unclear. Here, by comparing the iron uptake process between the iron-poor-soil-tolerant citrus species Zhique (ZQ) and the iron-poor-soil-sensitive citrus species trifoliate orange (TO), we discovered that enhanced root H + efflux is crucial for the tolerance to iron deficiency in ZQ. The H+ efflux is mainly regulated by a plasma membrane-localized H+-ATPase, HA6, the expression of which is upregulated in plants grown in soil with low iron content, and significantly higher in the roots of ZQ than TO. Overexpression of the HA6 gene in the Arabidopsis thaliana aha2 mutant, defective in iron uptake, recovered the wild-type phenotype. In parallel, overexpression of the HA6 gene in TO significantly increased iron content of plants. Moreover, an iron deficiency-induced transcription factor, MYB308, was revealed to bind the promoter and activate the expression of HA6 in ZQ in yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays. Overexpression of MYB308 in ZQ roots significantly increased the expression level of the HA6 gene. However, MYB308 cannot bind or activate the HA6 promoter in TO due to the sequence variation of the corresponding MYB308 binding motif. Taking these results together, we propose that the MYB308 could activate HA6 to promote root H+ efflux and iron uptake, and that the distinctive MYB308-HA6 transcriptional module may be, at least in part, responsible for the iron deficiency tolerance in citrus.

2.
Molecules ; 22(7)2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28753918

RESUMO

'Zhique' (Citrus wilsonii Tanaka) is a traditional Chinese medicine. Its fruits have been used to treat inflammation-related symptoms, such as cough and sputum, though the underlying mechanism remains poorly understood. The aim of this study was to investigate the anti-inflammatory properties of 'Zhique' pulp extract (ZQE) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and primary mouse bone marrow-derived dendritic cells (BMDCs). The flavonoid profiles of the ZQE were determined by high performance liquid chromatography. The anti-inflammatory activity was evaluated in LPS-induced inflammatory RAW 264.7 macrophages and BMDCs through enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and Western blot assays. Naringin was a predominant flavonoid occurring in ZQE, followed by eriocitrin, hesperidin, neohesperidin, rhoifolin, naringenin, and poncirin. ZQE exhibited a very low cytotoxicity in LPS-stimulated RAW 264.7 macrophages. Meanwhile, ZQE significantly inhibited the production of prostaglandins E2 and secretion of cyclooxygenase-2 protein in LPS-stimulated RAW 264.7 macrophages, and markedly suppressed the mRNA expression of inflammatory mediators, such as cyclooxygenase-2, tumor necrosis factor alpha, interleukin-1 beta (IL-1ß), and IL-6 in LPS-induced RAW 264.7 macrophages and/or primary BMDCs. The ZQE inhibited the inflammatory responses in RAW 264.7 macrophages and BMDCs triggered by LPS. The results suggested that 'Zhique' has a high potential as a novel therapeutic agent to treat chronic inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Medula Óssea/efeitos dos fármacos , Citrus/química , Células Dendríticas/efeitos dos fármacos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Extratos Vegetais/farmacologia , Animais , Medula Óssea/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Células Dendríticas/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos
3.
Front Plant Sci ; 8: 1104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694816

RESUMO

Iron is an essential micronutrient for plants, and plants have evolved adaptive mechanisms to improve iron acquisition from soils. Grafting on iron deficiency-tolerant rootstock is an effective strategy to prevent iron deficiency-chlorosis in fruit-tree crops. To determine the mechanisms underlying iron uptake in iron deficiency, two iron deficiency-tolerant citrus rootstocks, Zhique (ZQ) and Xiangcheng (XC), as well as iron deficiency-sensitive rootstock trifoliate orange (TO) seedlings were studied. Plants were grown in hydroponics system for 100 days, having 50 µM iron (control) and 0 µM iron (iron deficiency) nutrient solution. Under iron deficiency, more obvious visual symptoms of iron chlorosis were observed in the leaves of TO, whereas slight symptoms were observed in ZQ and XC. This was further supported by the lower chlorophyll concentration in the leaves of TO than in leaves of ZQ and XC. Ferrous iron showed no differences among the three citrus rootstock roots, whereas ferrous iron was significantly higher in leaves of ZQ and XC than TO. The specific iron absorption rate and leaf iron proportion were significantly higher in ZQ and XC than in TO, suggesting the iron deficiency tolerance can be explained by increased iron uptake in roots of ZQ and XC, allowed by subsequent translocation to shoots. In transcriptome analysis, 29, 298, and 500 differentially expressed genes (DEGs) in response to iron deficiency were identified in ZQ, XC, and TO, respectively (Fold change ≥ 2 and Probability ≥ 0.8 were used as thresholds to identify DEGs). A Gene Ontology analysis suggested that several genotype-specific biological processes are involved in response to iron deficiency. Genes associated with cell wall biosynthesis, ethylene and abscisic acid signal transduction pathways were involved in iron deficiency responses in citrus rootstocks. The results of this study provide a basis for future analyses of the physiological and molecular mechanisms of the tolerance of different citrus rootstocks to iron deficiency.

4.
Food Funct ; 5(2): 295-302, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24336758

RESUMO

Excessive consumption of horticultural fruit is a double-edged sword with both positive and negative effects. In Eastern countries, a large number of people have suffered from shang huo as a result of excessive consumption of "heating" foods, such as lychee, longan, mandarin orange, mango and civet durian. The present study adopted a step by step strategy screened the compositions with pro-inflammatory effect in satsuma fruits. The pro-inflammatory effects of all fractions were evaluated in RAW 264.7 cell lines by enzyme-linked immunosorbent assay (ELISA) and RT-PCR tests. The soluble water extract (SWE) from satsuma increased the production of prostaglandin E2 (PGE2) and promoted the expression level of cyclooxygenase-2 (COX-2) mRNA. SWE and high molecular weight molecules extracted from soluble water extract (HSWE) were respectively fractionated by dialysis bags and gel filtration chromatography. The macromolecular fraction named F1 was further obtained from HSWE, and could increase the production of inflammatory mediators. Finally F1 was resolved by SDS-PAGE and six proteins were identified by mass spectrometry. Compared with other detected proteins, polygalacturonase inhibitor (PGIP) and chitinase were the most likely candidate pro-inflammatory proteins according to molecular mass, and both of them were Citrus unshiu species. cDNA sequences of PGIP and chitinase were cloned and their functions were predicted as defensive proteins by SMART analysis. Excessive intake of these defensive proteins may result in adverse food reactions in human beings, such as shang huo and other immune responses.


Assuntos
Citrus/química , Frutas/química , Mediadores da Inflamação/química , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Animais , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Dinoprostona/imunologia , Eletroforese em Gel de Poliacrilamida , Humanos , Mediadores da Inflamação/efeitos adversos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/isolamento & purificação , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/imunologia , Camundongos , Extratos Vegetais/imunologia , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA