Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 10(3): uhad014, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36968183

RESUMO

Hydrogen sulfide (H2S) is involved in multiple processes during plant growth and development. D-cysteine desulfhydrase (DCD) can produce H2S with D-cysteine as the substrate; however, the potential developmental roles of DCD have not been explored during the tomato lifecycle. In the present study, SlDCD2 showed increasing expression during fruit ripening. Compared with the control fruits, the silencing of SlDCD2 by pTRV2-SlDCD2 accelerated fruit ripening. A SlDCD2 gene-edited mutant was constructed by CRISPR/Cas9 transformation, and the mutant exhibited accelerated fruit ripening, decreased H2S release, higher total cysteine and ethylene contents, enhanced chlorophyll degradation and increased carotenoid accumulation. Additionally, the expression of multiple ripening-related genes, including NYC1, PAO, SGR1, PDS, PSY1, ACO1, ACS2, E4, CEL2, and EXP was enhanced during the dcd2 mutant tomato fruit ripening. Compared with the wild-type fruits, SlDCD2 mutation induced H2O2 and malondialdehyde (MDA) accumulation in fruits, which led to an imbalance in reactive oxygen species (ROS) metabolism. A correlation analysis indicated that H2O2 content was strongly positively correlated with carotenoids content, ethylene content and ripening-related gene expression and negatively correlated with the chlorophyll content. Additionally, the dcd2 mutant showed earlier leaf senescence, which may be due to disturbed ROS homeostasis. In short, our findings show that SlDCD2 is involved in H2S generation and that the reduction in endogenous H2S production in the dcd2 mutant causes accelerated fruit ripening and premature leaf senescence. Additionally, decreased H2S in the dcd2 mutant causes excessive H2O2 accumulation and increased ethylene release, suggesting a role of H2S and SlDCD2 in modulating ROS homeostasis and ethylene biosynthesis.

2.
Biophys J ; 121(20): 3917-3926, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36045574

RESUMO

Acoustic transduction by plants has been proposed as a mechanism to enable just-in-time up-regulation of metabolically expensive defensive compounds. Although the mechanisms by which this "hearing" occurs are unknown, mechanosensation by elongated plant hair cells known as trichomes is suspected. To evaluate this possibility, we developed a theoretical model to evaluate the acoustic radiation force that an elongated cylinder can receive in response to sounds emitted by animals, including insect herbivores, and applied it to the long, cylindrical stem trichomes of the tomato plant Solanum lycopersicum. Based on perturbation theory and validated by finite element simulations, the model quantifies the effects of viscosity and frequency on this acoustic radiation force. Results suggest that acoustic emissions from certain animals, including insect herbivores, may produce acoustic radiation force sufficient to trigger stretch-activated ion channels.


Assuntos
Solanum lycopersicum , Animais , Solanum lycopersicum/fisiologia , Tricomas , Acústica
3.
Sci Adv ; 8(35): eabn6027, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044576

RESUMO

Chronic kidney diseases are widespread and incurable. The biophysical mechanisms underlying them are unclear, in part because material systems for reconstituting the microenvironment of relevant kidney cells are limited. A critical question is how kidney podocytes (glomerular epithelial cells) regenerate foot processes of the filtration apparatus following injury. Recently identified sarcomere-like structures (SLSs) with periodically spaced myosin IIA and synaptopodin appear in injured podocytes in vivo. We hypothesized that SLSs template synaptopodin in the initial stages of recovery in response to microenvironmental stimuli and tested this hypothesis by developing an ex vivo culture system that allows control of the podocyte microenvironment. Results supported our hypothesis. SLSs in podocytes that migrated from isolated kidney glomeruli presented periodic synaptopodin-positive clusters that nucleated peripheral, foot process-like extensions. SLSs were mechanoresponsive to actomyosin inhibitors and substrate stiffness. Results suggest SLSs as mechanobiological mediators of podocyte recovery and as potential targets for therapeutic intervention.


Assuntos
Nefropatias , Podócitos , Células Epiteliais , Humanos , Rim , Sarcômeros
4.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884883

RESUMO

Hydrogen sulfide (H2S), a novel gasotransmitter in both mammals and plants, plays important roles in plant development and stress responses. Leaf senescence represents the final stage of leaf development. The role of H2S-producing enzyme L-cysteine desulfhydrase in regulating tomato leaf senescence is still unknown. In the present study, the effect of an L-cysteine desulfhydrase LCD1 on leaf senescence in tomato was explored by physiological analysis. LCD1 mutation caused earlier leaf senescence, whereas LCD1 overexpression significantly delayed leaf senescence compared with the wild type in 10-week tomato seedlings. Moreover, LCD1 overexpression was found to delay dark-induced senescence in detached tomato leaves, and the lcd1 mutant showed accelerated senescence. An increasing trend of H2S production was observed in leaves during storage in darkness, while LCD1 deletion reduced H2S production and LCD1 overexpression produced more H2S compared with the wild-type control. Further investigations showed that LCD1 overexpression delayed dark-triggered chlorophyll degradation and reactive oxygen species (ROS) accumulation in detached tomato leaves, and the increase in the expression of chlorophyll degradation genes NYC1, PAO, PPH, SGR1, and senescence-associated genes (SAGs) during senescence was attenuated by LCD1 overexpression, whereas lcd1 mutants showed enhanced senescence-related parameters. Moreover, a correlation analysis indicated that chlorophyll content was negatively correlated with H2O2 and malondialdehyde (MDA) content, and also negatively correlated with the expression of chlorophyll degradation-related genes and SAGs. Therefore, these findings increase our understanding of the physiological functions of the H2S-generating enzyme LCD1 in regulating leaf senescence in tomato.


Assuntos
Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Folhas de Planta/enzimologia , Senescência Vegetal , Solanum lycopersicum/enzimologia , Clorofila/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/fisiologia , Escuridão , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo
5.
Ultrasonics ; 108: 106205, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32615366

RESUMO

Although ultrasound tools for manipulating and permeabilizing suspended cells have been available for nearly a century, accurate prediction of the distribution of acoustic radiation force (ARF) continues to be a challenge. We therefore developed an analytical model of the acoustic radiation force (ARF) generated by a focused Gaussian ultrasound beam incident on a eukaryotic cell immersed in an ideal fluid. The model had three layers corresponding to the nucleus, cytoplasm, and membrane, of a eukaryotic cell. We derived an exact expression for the ARF in relation to the geometrical and acoustic parameters of the model cell components. The mechanics of the cell membrane and nucleus, the relative width of the Gaussian beam, the size, position and aspect ratio of the cell had significant influence on the ARF. The model provides a theoretical basis for improved acoustic control of cell trapping, cell sorting, cell assembly, and drug delivery.


Assuntos
Acústica/instrumentação , Células Eucarióticas , Micromanipulação/instrumentação , Análise de Elementos Finitos , Modelos Teóricos
6.
Org Biomol Chem ; 17(36): 8403-8407, 2019 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-31482915

RESUMO

Building new biological molecules is challenging. Herein, imidazo[1,2-c]thiazoles were synthesized as a new class of heterobicyclic analogs through Pd-catalyzed cascade bicyclization from isonitriles with thioamides. The bicyclic scaffolds were constructed by inserting three molecules of isonitrile into two molecules of thioamide and then cyclizing them in a one-pot procedure. In vitro antitumor studies of these new compounds were conducted by using the MTT assay, and compound 3c showed excellent inhibitory effects against HepG2 at 7.06 ± 0.68 µM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA