Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 754: 144885, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32535046

RESUMO

BACKGROUND: Congenital hypogonadotropic hypogonadism (CHH) is a rare genetically heterogeneous disorder. We aimed to determine the prevalence and pathogenesis of NECL2 (Nectin-like molecule 2) variants in a cohort of female patients with CHH. METHODS: We sequenced and determined the prevalence of NECL2 variants in 68 female patients with CHH and 243 healthy controls collected from an academic medical center. Further cellular and animal studies were performed to verify the pathogenicity of the mutations. Necl2 knockout female mice were generated, and their puberty development was observed. RESULTS: A novel NECL2 variant (c.1052_1060del, p.Thr351_Thr353del) was detected in 4 of 68 (5.9%) patients with CHH. Its prevalence was significantly higher in CHH patients than in healthy controls (0%). At the cellular level, the necl2 variant leads to a decrease in gonadotropin-releasing hormone. In animal models, we found that the Necl2 protein was expressed in the hypothalamus, especially in the ventromedial hypothalamic nucleus of mice. Necl2 knockout female mice showed delayed puberty and an irregular estrous cycle, consistent with CHH patient phenotypes. CONCLUSIONS: Our findings predict that NECL2 may be a new candidate gene for CHH and that the NECL2 protein plays a critical role in the progression of puberty development.


Assuntos
Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo , Hipogonadismo/patologia , Mutação , Puberdade , Maturidade Sexual , Adolescente , Adulto , Animais , Apoptose , Estudos de Casos e Controles , Adesão Celular , Proliferação de Células , Células Cultivadas , Estudos de Coortes , Ciclo Estral , Feminino , Hormônio Liberador de Gonadotropina , Humanos , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Prognóstico , Adulto Jovem
2.
Menopause ; 27(7): 794-800, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32132441

RESUMO

OBJECTIVE: The aim of the study was to provide reference values for sonographic measurements of uterine morphology, quantify changes in uterine morphology across the menopausal transition, and identify possible factors associated with sonographic findings in uterine morphology. METHODS: This is a longitudinal cohort study conducted in middle-aged Chinese women. Using transvaginal ultrasound, we measured morphologic parameters of the uterus (volume and endometrial thickness) under standardized conditions every year for over a decade. RESULTS: Uterine volume begins to decrease before the final menstrual period and declines rapidly thereafter. Compared with a baseline measurement taken in the year of the final menstrual period, uterine volume decreased by 20% and 35% at the first year and second year of postmenopause, respectively. The rate of decrease was slower in the third year. Compared with endometrial thickness in the year of the final menstrual period, the figures for 2 and 3 years before the final menstrual period were 5% and 10% higher, while they decreased by 9% and 18% at the first and second year after the final menstrual period. Similarly, the endometrial thickness became relatively stable 3 years after the final menstrual cycle. These observations were fairly consistent across all women without uterine fibroids. Endometrial thickness was significantly positively associated with body mass index (P = 0.049) after adjusting for time and menopausal stage. CONCLUSIONS: The figures for uterine volume and endometrial thickness decrease around menopause using ultrasound measurments with large reductions in the first and second year after the final menstrual period. A higher body mass index is associated with increased endometrial thickness.


Assuntos
Ovário , Útero , Envelhecimento , Endométrio/diagnóstico por imagem , Feminino , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Estudos Prospectivos , Ultrassonografia , Útero/diagnóstico por imagem
3.
Anal Chem ; 91(20): 12942-12947, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31507162

RESUMO

N-linked glycosylation, featuring various glycoforms, is one of the most common and complex protein post-translational modifications (PTMs) controlling protein structures and biological functions. It has been revealed that abnormal changes of protein N-glycosylation patterns are associated with many diseases. Hence, unraveling the disease-related alteration of glycosylation, especially the glycoforms, is crucial and beneficial to improving our understanding about the pathogenic mechanisms of various diseases. In past decades, given the capability of in situ mapping of biomolecules and their region-specific localizations, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been widely applied to the discovery of potential biomarkers for many diseases. In this study, we coupled a novel subatmospheric pressure (SubAP)/MALDI source with a Q Exactive HF hybrid quadrupole-orbitrap mass spectrometer for in situ imaging of N-linked glycans from formalin-fixed paraffin-embedded (FFPE) tissue sections. The utility of this new platform for N-glycan imaging analysis was demonstrated with a variety of FFPE tissue sections. A total of 55 N-glycans were successfully characterized and visualized from a FFPE mouse brain section. Furthermore, 29 N-glycans with different spatial distribution patterns could be identified from a FFPE mouse ovarian cancer tissue section. High-mannose N-glycans exhibited elevated expression levels in the tumor region, indicating the potential association of this type of N-glycans with tumor progression.


Assuntos
Encéfalo/metabolismo , Formaldeído/química , Neoplasias Ovarianas/metabolismo , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Feminino , Glicosilação , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Fixação de Tecidos
4.
Aging Cell ; 18(5): e13014, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31373126

RESUMO

The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source. Here, we show that loss of hypothalamic mTORC2 signaling in mice decreases activity level, increases the set point for adiposity, and renders the animals susceptible to diet-induced obesity. Hypothalamic mTORC2 signaling normally increases with age, and mice lacking this pathway display higher fat mass and impaired glucose homeostasis throughout life, become more frail with age, and have decreased overall survival. We conclude that hypothalamic mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. Our results have implications for the use of mTORC2-inhibiting pharmaceuticals in the treatment of brain cancer and diseases of aging.


Assuntos
Hipotálamo/metabolismo , Longevidade , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
5.
J Biol Chem ; 294(28): 10954-10968, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152060

RESUMO

Neurite outgrowth requires coordinated cytoskeletal rearrangements in the growth cone and directional membrane delivery from the neuronal soma. As an essential Rho guanine nucleotide exchange factor (GEF), TRIO is necessary for cytoskeletal dynamics during neurite outgrowth, but its participation in the membrane delivery is unclear. Using co-localization studies, live-cell imaging, and fluorescence recovery after photobleaching analysis, along with neurite outgrowth assay and various biochemical approaches, we here report that in mouse cerebellar granule neurons, TRIO protein pools at the Golgi and regulates membrane trafficking by controlling the directional maintenance of both RAB8 (member RAS oncogene family 8)- and RAB10-positive membrane vesicles. We found that the spectrin repeats in Golgi-resident TRIO confer RAB8 and RAB10 activation by interacting with and activating the RAB GEF RABIN8. Constitutively active RAB8 or RAB10 could partially restore the neurite outgrowth of TRIO-deficient cerebellar granule neurons, suggesting that TRIO-regulated membrane trafficking has an important functional role in neurite outgrowth. Our results also suggest cross-talk between Rho GEF and Rab GEF in controlling both cytoskeletal dynamics and membrane trafficking during neuronal development. They further highlight how protein pools localized to specific organelles regulate crucial cellular activities and functions. In conclusion, our findings indicate that TRIO regulates membrane trafficking during neurite outgrowth in coordination with its GEF-dependent function in controlling cytoskeletal dynamics via Rho GTPases.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neuritos/metabolismo , Crescimento Neuronal/fisiologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Movimento Celular , Cerebelo/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Cones de Crescimento/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Neuritos/fisiologia , Neurônios/metabolismo , Fosfoproteínas/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Proteico , Transdução de Sinais/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
6.
Brain ; 139(Pt 3): 937-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26787453

RESUMO

The aberrant accumulation of toxic protein aggregates is a key feature of many neurodegenerative diseases, including Huntington's disease, amyotrophic lateral sclerosis and Alzheimer's disease. As such, improving normal proteostatic mechanisms is an active target for biomedical research. Although they share common pathological features, protein aggregates form in different subcellular locations. Nε-lysine acetylation in the lumen of the endoplasmic reticulum has recently emerged as a new mechanism to regulate the induction of autophagy. The endoplasmic reticulum acetylation machinery includes AT-1/SLC33A1, a membrane transporter that translocates acetyl-CoA from the cytosol into the endoplasmic reticulum lumen, and ATase1 and ATase2, two acetyltransferases that acetylate endoplasmic reticulum cargo proteins. Here, we used a mutant form of α-synuclein to show that inhibition of the endoplasmic reticulum acetylation machinery specifically improves autophagy-mediated disposal of toxic protein aggregates that form within the secretory pathway, but not those that form in the cytosol. Consequently, haploinsufficiency of AT-1/SLC33A1 in the mouse rescued Alzheimer's disease, but not Huntington's disease or amyotrophic lateral sclerosis. In fact, intracellular toxic protein aggregates in Alzheimer's disease form within the secretory pathway while in Huntington's disease and amyotrophic lateral sclerosis they form in different cellular compartments. Furthermore, biochemical inhibition of ATase1 and ATase2 was also able to rescue the Alzheimer's disease phenotype in a mouse model of the disease. Specifically, we observed reduced levels of soluble amyloid-ß aggregates, reduced amyloid-ß pathology, reduced phosphorylation of tau, improved synaptic plasticity, and increased lifespan of the animals. In conclusion, our results indicate that Nε-lysine acetylation in the endoplasmic reticulum lumen regulates normal proteostasis of the secretory pathway; they also support therapies targeting endoplasmic reticulum acetyltransferases, ATase1 and ATase2, for a subset of chronic degenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas de Membrana Transportadoras/biossíntese , Biossíntese de Proteínas/fisiologia , Via Secretória/fisiologia , Doença de Alzheimer/prevenção & controle , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Humanos , Camundongos , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional/fisiologia
7.
J Biol Chem ; 289(41): 28478-88, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25122766

RESUMO

Myosin light chain kinase (MLCK) has long been implicated in the myosin phosphorylation and force generation required for cell migration. Here, we surprisingly found that the deletion of MLCK resulted in fast cell migration, enhanced protrusion formation, and no alteration of myosin light chain phosphorylation. The mutant cells showed reduced membrane tether force and fewer membrane F-actin filaments. This phenotype was rescued by either kinase-dead MLCK or five-DFRXXL motif, a MLCK fragment with potent F-actin-binding activity. Pull-down and co-immunoprecipitation assays showed that the absence of MLCK led to attenuated formation of transmembrane complexes, including myosin II, integrins and fibronectin. We suggest that MLCK is not required for myosin phosphorylation in a migrating cell. A critical role of MLCK in cell migration involves regulating the cell membrane tension and protrusion necessary for migration, thereby stabilizing the membrane skeleton through F-actin-binding activity. This finding sheds light on a novel regulatory mechanism of protrusion during cell migration.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Jejuno/metabolismo , Miócitos de Músculo Liso/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Citoesqueleto de Actina/química , Actinas/química , Actinas/genética , Adenoviridae/genética , Motivos de Aminoácidos , Animais , Membrana Celular/química , Movimento Celular , Regulação da Expressão Gênica , Vetores Genéticos , Jejuno/citologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Miócitos de Músculo Liso/citologia , Quinase de Cadeia Leve de Miosina/química , Quinase de Cadeia Leve de Miosina/genética , Fosforilação , Cultura Primária de Células , Ligação Proteica , Transdução de Sinais , Tensão Superficial , Transfecção
8.
J Neurosci ; 34(20): 6772-89, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24828632

RESUMO

The import of acetyl-CoA into the ER lumen by AT-1/SLC33A1 is essential for the N(ε)-lysine acetylation of ER-resident and ER-transiting proteins. A point-mutation (S113R) in AT-1 has been associated with a familial form of spastic paraplegia. Here, we report that AT-1S113R is unable to form homodimers in the ER membrane and is devoid of acetyl-CoA transport activity. The reduced influx of acetyl-CoA into the ER lumen results in reduced acetylation of ER proteins and an aberrant form of autophagy. Mice homozygous for the mutation display early developmental arrest. In contrast, heterozygous animals develop to full term, but display neurodegeneration and propensity to infections, inflammation, and cancer. The immune and cancer phenotypes are contingent on the presence of pathogens in the colony, whereas the nervous system phenotype is not. In conclusion, our results reveal a previously unknown aspect of acetyl-CoA metabolism that affects the immune and nervous systems and the risk for malignancies.


Assuntos
Acetilcoenzima A/metabolismo , Retículo Endoplasmático/metabolismo , Infecções/metabolismo , Inflamação/metabolismo , Neoplasias/metabolismo , Degeneração Neural/metabolismo , Acetilação , Animais , Infecções/genética , Inflamação/genética , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Degeneração Neural/patologia
9.
PLoS One ; 7(4): e34894, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22485190

RESUMO

The structural homeostasis of the cochlear hair cell membrane is critical for all aspects of sensory transduction, but the regulation of its maintenance is not well understood. In this report, we analyzed the cochlear hair cells of mice with specific deletion of myosin light chain kinase (MLCK) in inner hair cells. MLCK-deficient mice showed impaired hearing, with a 5- to 14-dB rise in the auditory brainstem response (ABR) thresholds to clicks and tones of different frequencies and a significant decrease in the amplitude of the ABR waves. The mutant inner hair cells produced several ball-like structures around the hair bundles in vivo, indicating impaired membrane stability. Inner hair cells isolated from the knockout mice consistently displayed less resistance to hypoosmotic solution and less membrane F-actin. Myosin light-chain phosphorylation was also reduced in the mutated inner hair cells. Our results suggest that MLCK is necessary for maintaining the membrane stability of inner hair cells.


Assuntos
Membrana Celular/enzimologia , Células Ciliadas Auditivas Internas/enzimologia , Homeostase , Quinase de Cadeia Leve de Miosina/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Epitélio/enzimologia , Epitélio/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico , Expressão Gênica , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/ultraestrutura , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cadeias Leves de Miosina/metabolismo , Miosina VIIa , Quinase de Cadeia Leve de Miosina/deficiência , Quinase de Cadeia Leve de Miosina/genética , Miosinas/metabolismo , Órgão Espiral/citologia , Pressão Osmótica , Fosforilação , Processamento de Proteína Pós-Traducional , Deleção de Sequência , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
10.
J Biol Chem ; 285(8): 5522-31, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20018858

RESUMO

Different interacting signaling modules involving Ca(2+)/calmodulin-dependent myosin light chain kinase, Ca(2+)-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K(+)-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance.


Assuntos
Brônquios/enzimologia , Contração Muscular/fisiologia , Tono Muscular/fisiologia , Músculo Liso/enzimologia , Quinase de Cadeia Leve de Miosina/metabolismo , Traqueia/enzimologia , Acetilcolina/metabolismo , Resistência das Vias Respiratórias/efeitos dos fármacos , Resistência das Vias Respiratórias/fisiologia , Animais , Antineoplásicos Hormonais/farmacologia , Asma/enzimologia , Asma/genética , Cálcio/metabolismo , Calmodulina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Tono Muscular/efeitos dos fármacos , Quinase de Cadeia Leve de Miosina/genética , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Potássio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA