Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(40): e2311557120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748059

RESUMO

Plasmodium parasites cause malaria with disease outcomes ranging from mild illness to deadly complications such as severe malarial anemia (SMA), pulmonary edema, acute renal failure, and cerebral malaria. In young children, SMA often requires blood transfusion and is a major cause of hospitalization. Malaria parasite infection leads to the destruction of infected and noninfected erythrocytes as well as dyserythropoiesis; however, the mechanism of dyserythropoiesis accompanied by splenomegaly is not completely understood. Using Plasmodium yoelii yoelii 17XNL as a model, we show that both a defect in erythroblastic island (EBI) macrophages in supporting red blood cell (RBC) maturation and the destruction of reticulocytes/RBCs by the parasites contribute to SMA and splenomegaly. After malaria parasite infection, the destruction of both infected and noninfected RBCs stimulates extramedullary erythropoiesis in mice. The continuous decline of RBCs stimulates active erythropoiesis and drives the expansion of EBIs in the spleen, contributing to splenomegaly. Phagocytosis of malaria parasites by macrophages in the bone marrow and spleen may alter their functional properties and abilities to support erythropoiesis, including reduced expression of the adherence molecule CD169 and inability to support erythroblast differentiation, particularly RBC maturation in vitro and in vivo. Therefore, macrophage dysfunction is a key mechanism contributing to SMA. Mitigating and/or alleviating the inhibition of RBC maturation may provide a treatment strategy for SMA.


Assuntos
Anemia , Malária Cerebral , Plasmodium yoelii , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Eritropoese , Esplenomegalia , Eritrócitos , Macrófagos
2.
Sci Rep ; 8(1): 15280, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327482

RESUMO

Malaria is a disease with diverse symptoms depending on host immune status and pathogenicity of Plasmodium parasites. The continuous parasite growth within a host suggests mechanisms of immune evasion by the parasite and/or immune inhibition in response to infection. To identify pathways commonly inhibited after malaria infection, we infected C57BL/6 mice with four Plasmodium yoelii strains causing different disease phenotypes and 24 progeny of a genetic cross. mRNAs from mouse spleens day 1 and/or day 4 post infection (p.i.) were hybridized to a mouse microarray to identify activated or inhibited pathways, upstream regulators, and host genes playing an important role in malaria infection. Strong interferon responses were observed after infection with the N67 strain, whereas initial inhibition and later activation of hematopoietic pathways were found after infection with 17XNL parasite, showing unique responses to individual parasite strains. Inhibitions of pathways such as Th1 activation, dendritic cell (DC) maturation, and NFAT immune regulation were observed in mice infected with all the parasite strains day 4 p.i., suggesting universally inhibited immune pathways. As a proof of principle, treatment of N67-infected mice with antibodies against T cell receptors OX40 or CD28 to activate the inhibited pathways enhanced host survival. Controlled activation of these pathways may provide important strategies for better disease management and for developing an effective vaccine.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Malária , Plasmodium yoelii/fisiologia , Transdução de Sinais/imunologia , Baço , Animais , Antígenos CD28/imunologia , Malária/genética , Malária/imunologia , Malária/metabolismo , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries/métodos , Fatores de Transcrição NFATC/imunologia , Parasitemia/imunologia , RNA Mensageiro/genética , Receptores OX40/imunologia , Baço/metabolismo , Baço/parasitologia
3.
Mol Microbiol ; 104(6): 1037-1051, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370665

RESUMO

Growth of Pseudomonas aeruginosa on spermine requires a functional γ-glutamylpolyamine synthetase PauA2. Not only subjected to growth inhibition by spermine, the pauA2 mutant became more sensitive to ß-lactam antibiotics in human serum. To explore PauA2 as a potential target of drug development, suppressors of the pauA2 mutant, which alleviated toxicity, were isolated from selection plates containing spermine. These suppressors share common phenotypic changes including delayed growth rate, retarded swarming motility, and pyocyanin overproduction. Genome resequencing of a representative suppressor revealed a unique C599 T mutation at the phoU gene that results in Ser200 Leu substitution and a constitutive expression of the Pho regulon. Identical phenotypes were also observed in a ΔpauA2ΔphoU double knockout mutant and complemented by the wild-type phoU gene. Accumulation of polyphosphate granules and spermine resistance in the suppressor were reversed concomitantly when expressing exopolyphosphatase PPX from a recombinant plasmid, or by the introduction of deletion alleles in pstS pstC for phosphate uptake, phoB for Pho regulation, and ppk for polyphosphate synthesis. In conclusion, this study identifies polyphosphate accumulation due to an activated Pho regulon and phosphate uptake by the phoU mutation as a potential protection mechanism against spermine toxicity.


Assuntos
Polifosfatos/metabolismo , Pseudomonas aeruginosa/metabolismo , Espermina/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fosfatos/metabolismo , Regiões Promotoras Genéticas/genética , Pseudomonas aeruginosa/genética , Regulon/genética , Espermina/fisiologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA