Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Front Pharmacol ; 15: 1396378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290866

RESUMO

Objective: To mine and analyze adverse events (AEs) related to proteasome inhibitors in multiple myeloma based on the FDA Adverse Event Reporting System (FAERS), providing references for rational clinical medication. Methods: AE data related to multiple myeloma proteasome inhibitors were collected from the FAERS from the first quarter of 2010 to the first quarter of 2024. Signal mining of AEs was conducted using the reporting odds ratio method and Bayesian confidence propagation neural network method. Results: A total of 8,805 reports for bortezomib, 5,264 for carfilzomib, and 8,771 for ixazomib were collected, with corresponding AE signals of 474, 279, and 287, respectively, involving 23, 21, and 22 System Organ Classes (SOCs). The report information for the three drugs tended to be consistent: more cases were reported in males than in females; the majority of patients were 65 years and over; AEs mostly occurred within 6 months of medication; the outcomes primarily consisted of hospitalization, prolonged hospital stay, and other serious adverse events; the primary reporting country was the United States. The most affected SOCs were infections and infestations, general disorders and administration site conditions, and blood and lymphatic system disorders. Conclusion: The overall distribution of AEs for the three multiple myeloma proteasome inhibitors was consistent, but there were certain differences in specific AE signal characteristics, which should be noted in clinical applications.

2.
Stud Health Technol Inform ; 317: 139-145, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39234716

RESUMO

INTRODUCTION: Seamless interoperability of ophthalmic clinical data is beneficial for improving patient care and advancing research through the integration of data from various sources. Such consolidation increases the amount of data available, leading to more robust statistical analyses, and improving the accuracy and reliability of artificial intelligence models. However, the lack of consistent, harmonized data formats and meanings (syntactic and semantic interoperability) poses a significant challenge in sharing ophthalmic data. METHODS: The Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR), a standard for the exchange of healthcare data, emerges as a promising solution. To facilitate cross-site data exchange in research, the German Medical Informatics Initiative (MII) has developed a core data set (CDS) based on FHIR. RESULTS: This work investigates the suitability of the MII CDS specifications for exchanging ophthalmic clinical data necessary to train and validate a specific machine learning model designed for predicting visual acuity. In interdisciplinary collaborations, we identified and categorized the required ophthalmic clinical data and explored the possibility of its mapping to FHIR using the MII CDS specifications. DISCUSSION: We found that the current FHIR MII CDS specifications do not completely accommodate the ophthalmic clinical data we investigated, indicating that the creation of an extension module is essential.


Assuntos
Interoperabilidade da Informação em Saúde , Humanos , Interoperabilidade da Informação em Saúde/normas , Registros Eletrônicos de Saúde/normas , Alemanha , Aprendizado de Máquina , Nível Sete de Saúde/normas , Oftalmopatias/terapia , Oftalmologia
3.
J Nanobiotechnology ; 22(1): 593, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39343894

RESUMO

By inhibiting acetylcholinesterase (AChE) activity, organophosphate compounds (OPs) can quickly cause severe injury to the nervous system and death, making it extremely difficult to rescue victims after OP exposure. However, it is quite challenging to construct scavengers that neutralize and eliminate these harmful chemical agents promptly in the blood circulation system. Herein, we report an enzyme-armed biomimetic nanoparticle that enables a 'targeted binding and catalytic degradation' action mechanism designed for highly efficient in vivo detoxification (denoted as 'Nanocleaner'). Specifically, the resulting Nanocleaner is fabricated with polymeric cores camouflaged with a modified red blood cell membrane (RBC membrane) that is inserted with the organophosphorus hydrolase (OPH) enzyme. In such a subtle construct, Nanocleaner inherits abundant acetylcholinesterase (AChE) on the surface of the RBC membrane, which can specifically lure and neutralize OPs through biological binding. The OPH enzyme on the membrane surface breaks down toxicants catalytically. The in vitro protective effects of Nanocleaner against methyl paraoxon (MPO)-induced inhibition of AChE activity were validated using both preincubation and competitive regimens. Furthermore, we selected the PC12 neuroendocrine cell line as an experimental model and confirmed the cytoprotective effects of Nanocleaner against MPO. In mice challenged with a lethal dose of MPO, Nanocleaner significantly reduces clinical signs of intoxication, rescues AChE activity and promotes the survival rate of mice challenged with lethal MPO. Overall, these results suggest considerable promise of enzyme-armed Nanocleaner for the highly efficient removal of OPs for clinical treatment.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Compostos Organofosforados , Animais , Acetilcolinesterase/metabolismo , Camundongos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Ratos , Compostos Organofosforados/química , Membrana Eritrocítica , Células PC12 , Paraoxon/toxicidade , Paraoxon/análogos & derivados , Nanopartículas/química , Arildialquilfosfatase/metabolismo , Arildialquilfosfatase/química , Masculino , Intoxicação por Organofosfatos/tratamento farmacológico
4.
RSC Adv ; 14(40): 29368-29383, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39285886

RESUMO

Traditional photosensitizers (PS) in photodynamic therapy (PDT) have restricted tissue penetrability of light and a lack of selectivity for tumor cells, which diminishes the efficiency of PDT. Our aim is to effectively screen porphyrin-based PS medication through computational simulations of large-scale design and screening of PDT candidates via a precise description of the state of the light-stimulated PS molecule. Perylene-diimide (PDI) shows an absorption band in the near-infrared region (NIR) and a great photostability. Meanwhile, the insertion of metal can enhance tumor targeting. Therefore, on the basis of the original porphyrin PS segments, a series of metalloporphyrin combined with PDI and additional allosteric Zn-porphyrin-PDI systems were designed and investigated. Geometrical structures, frontier molecular orbitals, ultraviolet-visible (UV-vis) absorption spectra, adiabatic electron affinities (AEA), especially the triplet excited states and spin-orbit coupling matrix elements (SOCME) of these expanded D-A porphyrin were studied in detail using the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. PS candidates, conforming type I or II mechanism for PDT, have been researched carefully by molecular docking which targeted Factor-related apoptosis (Fas)/Fas ligand (Fasl) mediated signaling pathway. It was found that porphyrin-PDI, Fe2-porphyrin-PDI, Zn-porphyrin-PDI, Mg-porphyrin-PDI, Zn-porphyrin combined with PDI through single bond (compound 1), and two acetylenic bonds (compound 2) in this work would be proposed as potential PS candidates for PDT process. This study was expected to provide PS candidates for the development of novel medicines in PDT.

5.
MedComm (2020) ; 5(10): e718, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39286778

RESUMO

The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.

6.
Kidney Med ; 6(10): 100882, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39247762

RESUMO

Rationale & Objective: The development of anuria has been linked to worse clinical outcomes in patients undergoing peritoneal dialysis (PD). Our objective was to investigate the incidence, risk factors, and associated clinical outcomes of anuria within the first year after starting PD. Study Design: Retrospective cohort study. Setting & Participants: Patients who started continuous ambulatory peritoneal dialysis at our center between 2006 and 2020 were included and followed up until January 31, 2023. Exposure: Age, sex, diabetes, temporary hemodialysis, angiotensin-converting enzyme inhibitors (ACEis) or angiotensin II receptor blockers (ARBs), diuretics, baseline urine volume, serum albumin, daily glucose exposure, peritonitis, and incremental PD. Outcomes: The primary outcome was early anuria, defined as 24-hour urine volume ≤100 mL within the first year of PD initiation. Secondary outcomes included all-cause mortality, cardiovascular disease mortality, technique failure, and peritonitis. Analytical Approach: Cox proportional hazards model. Results: A total of 2,592 patients undergoing continuous ambulatory peritoneal dialysis aged 46.7 ± 14.9 years were recruited. Among them, 58.9% were male, and 24.0% had diabetes. Within the first year of PD therapy, 159 (6.13%) patients developed anuria, with a median duration of 7.53 (interquartile range, 3.93-10.0) months. Higher baseline urine volume (hazard ratio [HR], 0.93; 95% confidence interval [CI], 0.90-0.97), higher serum albumin (HR, 0.92; 95% CI, 0.88-0.95), having diabetes before PD (HR, 0.57; 95% CI, 0.35-0.92), and prescribed incremental PD (HR, 0.27; 95% CI, 0.14-0.51) were associated with a reduced risk for early anuria, whereas a higher level of daily glucose exposure (HR, 1.01; 95% CI, 1.00-1.01) was identified as a risk factor for early anuria. Subgroup analyses showed that using ACEis or ARBs was linked to a lower risk of early anuria (HR, 0.25; 95% CI, 0.09-0.69) in diabetic patients. Treating early anuria as a time-dependent covariate, early anuria was associated with a higher risk for all-cause mortality (HR, 1.69; 95% CI, 1.23-2.32) and technique failure (HR, 1.43; 95% CI, 1.00-2.04) after adjusting for confounding factors. Limitations: Single-center and observational study. Conclusions: Among PD patients at a single center in China, early anuria was relatively uncommon but associated with an increased risk of mortality and PD technique failure. Incremental PD, higher baseline urine output and serum albumin, and lower daily glucose exposure were associated with a lower risk of early anuria. Clinical trials are needed to evaluate the optimal PD techniques to preserve residual kidney function and maximaze outcomes.


The development of anuria has been linked to worse clinical outcomes in patients undergoing peritoneal dialysis (PD). However, does the development of early anuria, which is defined as 24-hour urine volume ≤100 mL, within the first year after PD initiation influence the clinical outcomes of these patients? What are the predictors of early anuria? We conducted a single-center retrospective cohort study and found lower baseline urine volume, lower serum albumin, full-dose PD start, absence of diabetes mellitus, higher daily glucose exposure, and in patients with diabetes mellitus, non-use of angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers were associated with early anuria. Early anuria was related to a higher risk for all-cause mortality and technique failure. The results provide information for optimizing patient care and improving the prognosis of patients undergoing PD.

7.
Eur J Pediatr ; 183(10): 4363-4377, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096385

RESUMO

The escalating worldwide prevalence of Crohn's disease (CD) among children and adolescents, coupled with a trend toward earlier onset, presents significant challenges for healthcare systems. Moreover, the chronicity of this condition imposes substantial individual burdens. Consequently, the principal objective of CD treatment revolves around rapid inducing remission. This study scrutinizes the impact of age, gender, initial disease localization, and therapy on the duration to achieve disease activity amelioration. Data from the Saxon Pediatric IBD Registry in Germany were analyzed over a period of 15 years. In addition to descriptive methods, logistic and linear regression analyses were conducted to identify correlations. Furthermore, survival analyses and Cox regressions were utilized to identify factors influencing the time to improvement in disease activity. These effects were expressed as Hazard Ratios (HR) with 95% confidence intervals. Data on the clinical course of 338 children and adolescents with CD were available in the registry. The analyses showed a significant correlation between a young age of onset and the severity of disease activity. It was evident that treatment with anti-TNF (Infliximab) was associated with a more favorable prognosis in terms of the time required for improvement in disease activity. Similarly, favorable outcomes were observed with the combination therapies of infliximab with enteral nutrition therapy and Infliximab with immunosuppressants.Conclusion: Our analysis of data from the Saxon Pediatric IBD Registry revealed that the timeframe for improvement of disease activity in pediatric Crohn's disease is influenced by several factors. Specifically, patient age, treatment modality, and initial site of inflammation were found to be significant factors. The study provides important findings that underline the need for individualized treatment.


Assuntos
Doença de Crohn , Infliximab , Sistema de Registros , Índice de Gravidade de Doença , Humanos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/epidemiologia , Doença de Crohn/terapia , Adolescente , Masculino , Alemanha/epidemiologia , Feminino , Criança , Infliximab/uso terapêutico , Fármacos Gastrointestinais/uso terapêutico , Resultado do Tratamento , Fatores Etários , Prognóstico , Pré-Escolar , Indução de Remissão , Imunossupressores/uso terapêutico , Idade de Início
8.
Genes Immun ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107478

RESUMO

Based on favorable outcomes and decreased propensity for lymph node and distant metastasis, multiple ground-glass nodules (GGNs) are now predominantly recognized as early-stage primary independent lung cancer. In this study, we discuss a case involving a patient with reoperative multifocal GGNs who was ultimately diagnosed with early multiple intrapulmonary metastases and multifocal primary lung cancers. This patient exhibited multisite epidermal growth factor receptor (EGFR) mutations, including the classical L858R, exon 19 deletion and the rare V834L variant. Despite a high tumor burden and the presence of various EGFR driver mutations, the patient experienced prolonged dormancy and exceptionally slow lesion growth, even without any systemic treatment. Our research indicates that the patient's immune response against the tumor remained robust throughout the disease course. Furthermore, we found that pathways associated with integrin-mediated cell extracellular matrix adhesion played a role in activating her innate immune responses and regulating tumor dormancy. Our findings suggest that the interplay between cancer cell mutations and the tumor microenvironment (TME) phenotype during tumor evolution contributed to this patient's prolonged survival. Integrating these aspects for lung tumor stratification is expected to improve predictions of growth potential and aid in clinical decision making.

9.
Biofabrication ; 16(4)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39121873

RESUMO

Current biofabrication strategies are limited in their ability to replicate native shape-to-function relationships, that are dependent on adequate biomimicry of macroscale shape as well as size and microscale spatial heterogeneity, within cell-laden hydrogels. In this study, a novel diffusion-based microfluidics platform is presented that meets these needs in a two-step process. In the first step, a hydrogel-precursor solution is dispersed into a continuous oil phase within the microfluidics tubing. By adjusting the dispersed and oil phase flow rates, the physical architecture of hydrogel-precursor phases can be adjusted to generate spherical and plug-like structures, as well as continuous meter-long hydrogel-precursor phases (up to 1.75 m). The second step involves the controlled introduction a small molecule-containing aqueous phase through a T-shaped tube connector to enable controlled small molecule diffusion across the interface of the aqueous phase and hydrogel-precursor. Application of this system is demonstrated by diffusing co-initiator sodium persulfate (SPS) into hydrogel-precursor solutions, where the controlled SPS diffusion into the hydrogel-precursor and subsequent photo-polymerization allows for the formation of unique radial stiffness patterns across the shape- and size-controlled hydrogels, as well as allowing the formation of hollow hydrogels with controllable internal architectures. Mesenchymal stromal cells are successfully encapsulated within hollow hydrogels and hydrogels containing radial stiffness gradient and found to respond to the heterogeneity in stiffness through the yes-associated protein mechano-regulator. Finally, breast cancer cells are found to phenotypically switch in response to stiffness gradients, causing a shift in their ability to aggregate, which may have implications for metastasis. The diffusion-based microfluidics thus finds application mimicking native shape-to-function relationship in the context of tissue engineering and provides a platform to further study the roles of micro- and macroscale architectural features that exist within native tissues.


Assuntos
Hidrogéis , Microfluídica , Engenharia Tecidual , Hidrogéis/química , Humanos , Microfluídica/métodos , Microfluídica/instrumentação , Células-Tronco Mesenquimais/citologia
10.
Stud Health Technol Inform ; 316: 643-644, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39176823

RESUMO

The integration of artificial intelligence (AI) algorithms into clinical practice holds immense potential to improve patient care, but widespread adoption still faces significant challenges, including interoperability issues. We propose a concept for the agile development of an IT platform to integrate AI-based applications into clinical workflows for a use case in ophthalmology.


Assuntos
Inteligência Artificial , Integração de Sistemas , Oftalmologia , Sistemas de Apoio a Decisões Clínicas/organização & administração , Humanos , Registros Eletrônicos de Saúde , Algoritmos , Fluxo de Trabalho
11.
Eur J Pharmacol ; 979: 176861, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068975

RESUMO

Bone cancer pain (BCP) is a complex clinical challenge, with current treatments often falling short of providing adequate relief. Remimazolam, a benzodiazepine receptor agonist recognized for its anxiolytic effects, has emerged as a potential agent in managing BCP. This study explores the analgesic properties of remimazolam and its interaction with the translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, in spinal astrocytes. In the context of BCP, previous research has indicated that TSPO expression in spinal astrocytes may serve a protective regulatory function in neuropathic pain models. Building on this, the BCP mice received various doses of remimazolam on the 15th day post-inoculation, and pain behavior was assessed over time. The results showed that BCP induced an upregulation of TSPO and astrocyte activation in the spinal dorsal horn, alongside increased extracellular signal-regulated kinase (ERK) signaling and inflammatory cytokine expression. Remimazolam administration resulted in a dose-dependent reduction of pain behaviors, which corresponded with a decrease in both ERK pathway activation and inflammatory factor expression. This suggests that remimazolam's analgesic effects are mediated through its action as a TSPO agonist, leading to the attenuation of neuroinflammation and pain signaling pathways. Importantly, the analgesic effects of remimazolam were reversed by the TSPO antagonist PK11195, underscoring the pivotal role of TSPO in the drug's mechanism of action. This reversal also reinstated the heightened levels of ERK activity and inflammatory mediators, further confirming the involvement of TSPO in the modulation of these pain-related processes. These findings open new avenues for the therapeutic management of bone cancer pain, positioning remimazolam as a promising candidate for further investigation and development.


Assuntos
Astrócitos , Neoplasias Ósseas , Dor do Câncer , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Camundongos , Dor do Câncer/tratamento farmacológico , Dor do Câncer/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/tratamento farmacológico , Benzodiazepinas/farmacologia , Benzodiazepinas/uso terapêutico , Feminino , Receptores de GABA/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
12.
ACS Appl Mater Interfaces ; 16(28): 35912-35924, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976770

RESUMO

The extracellular matrix (ECM) shapes the stem cell fate during differentiation by exerting relevant biophysical cues. However, the mechanism of stem cell fate decisions in response to ECM-backed complex biophysical cues has not been fully understood due to the lack of versatile ECMs. Here, we designed two versatile ECMs using colloidal self-assembly technology to probe the mechanisms of their effects on mechanotransduction and stem cell fate regulation. Binary colloidal crystals (BCC) with a hexagonally close-packed structure, composed of silica (5 µm) and polystyrene (0.4 µm) particles as well as a polydimethylsiloxane-embedded BCC (BCCP), were fabricated. They have defined surface chemistry, roughness, stiffness, ion release, and protein adsorption properties, which can modulate the cell adhesion, proliferation, and differentiation of human adipose-derived stem cells (hASCs). On the BCC, hASCs preferred osteogenesis at an early stage but showed a higher tendency toward adipogenesis at later stages. In contrast, the results of BCCP diverged from those of BCC, suggesting a unique regulation of ECM-dependent mechanotransduction. The BCC-mediated cell adhesion reduced the size of the focal adhesion complex, accompanying an ordered spatial organization and cytoskeletal rearrangement. This morphological restriction led to the modulation of mechanosensitive transcription factors, such as c-FOS, the enrichment of transcripts in specific signaling pathways such as PI3K/AKT, and the activation of the Hippo signaling pathway. Epigenetic analyses showed changes in histone modifications across different substrates, suggesting that chromatin remodeling participated in BCC-mediated mechanotransduction. This study demonstrates that BCCs are versatile artificial ECMs that can regulate human stem cells' fate through unique biological signaling, which is beneficial in biomaterial design and stem cell engineering.


Assuntos
Diferenciação Celular , Coloides , Epigênese Genética , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Coloides/química , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Adesão Celular/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Dióxido de Silício/química , Poliestirenos/química , Proliferação de Células/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
13.
Expert Opin Drug Saf ; : 1-9, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39083396

RESUMO

OBJECTIVE: The FDA Adverse Event Reporting System (FAERS) was used to mine and evaluate adverse events (AEs) associated with cyclin-dependent kinase (CDK) 4/6 inhibitors, thereby providing a reference for clinical rational drug use. METHODS: AE data related to CDK4/6 inhibitors from the first quarter of 2015 to the first quarter of 2023 were acquired from FAERS, while the signal mining was processed using the reporting odds ratio (ROR) method and Bayesian confidence propagation neural network (BCPNN) method. RESULTS: The number of AE reports for CDK4/6 inhibitors was, respectively, 132,494 for palbociclib, 56,151 for ribociclib, and 7,014 for abemaciclib. The corresponding numbers of AE signals were 319, 517, and 59, with the number of involved System Organ Class (SOC) being 23, 23, and 15, mainly involving blood and lymphatic system disorders, respiratory, thoracic and mediastinal disorders, hepatobiliary disorders, skin and subcutaneous tissue disorders, etc. CONCLUSION: CDK4/6 inhibitors could lead to pulmonary toxicity, myelosuppression, skin reactions, etc. Special attention should be paid to abemaciclib for interstitial lung disease (ILD), erythema multiforme, and thrombosis risk; ribociclib for cardiac toxicity, hepatotoxicity, and musculoskeletal toxicity; palbociclib for neurocognitive impairment and osteonecrosis of the jaw.

14.
Gland Surg ; 13(5): 684-696, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38845832

RESUMO

Background: Circulating tumor DNA (ctDNA) is a potential biomarker not only capable of monitoring the treatment response during neoadjuvant therapy (NAT) or rescue therapy, but also identifying minimal residual disease (MRD) and detecting early relapses after primary treatment. However, it remains uncertain whether the detection of ctDNA at diagnosis, before any treatment, can predict the prognosis for patients with early breast cancer. The objective of our study was to evaluate the predictive value of baseline ctDNA for prognosis in patients with early breast cancer. Methods: A total of 90 patients with early breast cancer and 24 healthy women were recruited between August 2016 and October 2016. Peripheral blood samples were collected from patients at diagnosis, before any treatment. Blood samples were processed and subjected to targeted deep sequencing with a next-generation sequencing (NGS) panel of 1,021 cancer-related genes. The recurrence-free survival (RFS) and invasive disease-free survival (iDFS) were reported. Results: The 90 patients with breast cancer included 6 patients with ductal carcinoma in situ (DCIS) and 84 patients with invasive breast cancer. Within the cohort of patients with invasive breast cancer, ctDNA were detected in 57 patients, with a ctDNA detection rate of 67.9%. Meanwhile, no ctDNA was detected in DCIS patients. Among 84 patients with invasive breast cancer, patients with high-level ctDNA had a significantly lower RFS compared to patients with low-level ctDNA (log-rank P=0.0036). Conclusions: Our study suggested that ctDNA at diagnosis, before any treatment, could potentially serve as a biomarker to predict the prognosis for patients with early breast cancer. However, further follow-up and more studies with large sample sizes are required to confirm these findings.

15.
Transl Oncol ; 47: 102029, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906066

RESUMO

Radiation-induced lung injury (RILI) is a severe complication arising from thoracic tumor radiotherapy, which constrains the possibility of increasing radiation dosage. Current RILI therapies provide only limited relief and may result in undesirable side effects. Therefore, there is an urgent demand for effective and low-toxicity treatments for RILI. Macrophages play a pivotal role in RILI, promoting inflammation in the initial stages and facilitating fibrosis in the later stages. Sodium clodronate, a bisphosphonate, can induce macrophage apoptosis when encapsulated in liposomes. In this study, we explored the potential of liposomal sodium clodronate (LC) as a specific agent for depleting macrophages to alleviate acute RILI. We assessed the impact of LC on macrophage consumption both in vitro and in vivo. In a mouse model of acute RILI, LC treatment group led to a reduction in alveolar macrophage counts, mitigated lung injury severity, and lowered levels of pro-inflammatory cytokines in both plasma and bronchoalveolar lavage fluid. Additionally, we further elucidated the specific effects and mechanism of LC on macrophages in vitro. Alveolar macrophages MHS cells were subjected to varying concentrations of LC (0, 50, 100, 200 µg/ml), and the results demonstrated its dose-dependent inhibition of cell proliferation and induction of apoptosis. Moreover, LC decreased the secretion of pro-inflammatory cytokines, including IL-1ß, IL-6, and TNF-α. Conditioned media from LC-treated macrophages protected alveolar epithelial cells MLE-12 from radiation-induced damage, as demonstrated by reduced apoptosis and DNA damage. These findings imply that LC-mediated macrophage depletion may present a promising therapeutic strategy for alleviating radiation-induced lung injury.

16.
Chin J Integr Med ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941045

RESUMO

OBJECTIVE: To observe the therapeutic effects and underlying mechanism of baicalin against colon cancer. METHODS: The effects of baicalin on the proliferation and growth of colon cancer cells MC38 and CT26. WT were observed and predicted potential molecular targets of baicalin for colon cancer therapy were studied by network pharmacology. Furthermore, molecular docking and drug affinity responsive target stability (DARTS) analysis were performed to confirm the interaction between potential targets and baicalin. Finally, the mechanisms predicted by in silico analyses were experimentally verified in-vitro and in-vivo. RESULTS: Baicalin significantly inhibited proliferation, invasion, migration, and induced apoptosis in MC38 and CT26 cells (all P<0.01). Additionally, baicalin caused cell cycle arrest at the S phase, while the G0/G1 phase was detected in the tiny portion of the cells. Subsequent network pharmacology analysis identified 6 therapeutic targets associated with baicalin, which potentially affect various pathways including 39 biological processes and 99 signaling pathways. In addition, molecular docking and DARTS predicted the potential binding of baicalin with cyclin dependent kinase inhibitor 2A (CDKN2A), protein kinase B (AKT), caspase 3, and mitogen-activated protein kinase (MAPK). In vitro, the expressions of CDKN2A, MAPK, and p-AKT were suppressed by baicalin in MC38 and CT26 cells. In vivo, baicalin significantly reduced the tumor size and weight (all P<0.01) in the colon cancer mouse model via inactivating p-AKT, CDKN2A, cyclin dependent kinase 4, cyclin dependent kinase 2, interleukin-1, tumor necrosis factor α, and activating caspase 3 and mouse double minute 2 homolog signaling (all P<0.05). CONCLUSION: Baicalin suppressed the CDKN2A protein level to prevent colon cancer and could be used as a therapeutic target for colon cancer.

17.
Inflammation ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761249

RESUMO

Uveitis is an autoimmune eye disease that can be involved in the entire body and is one of the leading causes of blindness. Therefore, comprehending the mechanisms underlying the development and regulation of ocular immune responses in uveitis is crucial for designing effective therapeutic interventions. In this study, we investigated how RBPJ regulates macrophage polarization in uveitis. We demonstrated that targeted RBPJ knockdown (RBPJKD) promotes M2 macrophage polarization and ameliorates uveitis through the mtROS-mediated Notch1-Jagged1-Hes1 signaling pathway. Real-time quantitative (Q-PCR) analysis revealed that the Notch1-Jagged1-Hes1 signaling pathway was active in the eye tissues of experimental autoimmune uveitis (EAU) rats. Immunofluorescence double staining confirmed enhanced signaling primarily occurring in macrophages, establishing a correlation between the Notch1 signaling pathway and macrophages. Transmission electron microscopy evaluated the morphological and functional changes of mitochondria in each group's eye tissues. It demonstrated significant swelling and disorganization in the EAU group, which were effectively restored upon RBPJ knockdown intervention. Finally, by employing an antioxidant N-acetyl-L-cysteine (NAC) to eliminate mtROS in vivo, we observed a decrease in the M2 macrophage polarization level, which prevented the cytoprotective effect conferred by RBPJKD. These findings underscore the relevance of the Notch signaling pathway to the immune system while highlighting the potential role of mtROS as a therapeutic target for inflammation and other related diseases.

18.
Clin Transl Med ; 14(4): e1656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38664597

RESUMO

BACKGROUND: Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY: The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION: Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS: The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.


Assuntos
Imunoterapia , Neoplasias , Organoides , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Organoides/efeitos dos fármacos , Medicina de Precisão/métodos
19.
Biomedicines ; 12(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38672134

RESUMO

Fibromyalgia is a chronic, widespread pain disorder that is strongly represented across the affective and cognitive dimensions of pain, given that the underlying pathophysiology of the disorder is yet to be identified. These affective and cognitive deficits are crucial to understanding and treating the fibromyalgia pain experience as a whole but replicating this multidimensionality on a preclinical level is challenging. To understand the underlying mechanisms, animal models are used. In this scoping review, we evaluate the current primary animal models of fibromyalgia regarding their translational relevance within the affective and cognitive pain realms, as well as summarize treatments that have been identified preclinically for attenuating these deficits.

20.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609049

RESUMO

INTRODUCTION: Helicobacter pylori (H. pylori) infection has been associated with gastric carcinogenesis. However, the precise involvement of LRP8, the low-density lipoprotein receptor-related protein 8, in H. pylori pathogenesis and gastric cancer (GC) remains poorly understood. OBJECTIVES: To investigate the potential role of LRP8 in H. pylori infection and gastric carcinogenesis. METHODS: Three-dimensional human-derived gastric organoids (hGO) and gastric cancer organoids (hGCO) were synthesized from the tissues obtained from human donors. In this work, multi-omics combined with in vivo and in vitro studies were conducted to investigate the potential involvement of LRP8 in H. pylori-induced GC. RESULTS: We found that H. pylori infection significantly upregulated the expression of LRP8 in human GC tissues, cells, organoids, and mouse gastric mucous. In particular, LRP8 exhibited a distinct enrichment in cancer stem cells (CSC). Functionally, silencing of LRP8 affected the formation and proliferation of tumor spheroids, while increased expression of LRP8 was associated with increased proliferation and stemness of GC cells and organoids. Mechanistically, LRP8 promotes the binding of E-cadherin to ß-catenin, thereby promoting nuclear translocation and transcriptional activity of ß-catenin. Furthermore, LRP8 interacts with the cytotoxin-associated gene A (CagA) to form the CagA/LRP8/ß-catenin complex. This complex further amplifies H. pylori-induced ß-catenin nuclear translocation, leading to increased transcription of inflammatory factors and CSC markers. Clinical analysis demonstrated that abnormal overexpression of LRP8 is correlated with a poor prognosis and resistance to 5-Fluorouracil in patients with GC. CONCLUSION: Our findings provide valuable information on the molecular intricacies of H. pylori-induced gastric carcinogenesis, offering potential therapeutic targets and prognostic markers for GC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA