Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Clinics (Sao Paulo) ; 79: 100417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39089098

RESUMO

OBJECTIVE: This study was to investigate the role of serum Klotho, fetuin-A, and Matrix Gla Protein (MGP) in Coronary Artery Calcification (CAC) in patients with Maintenance Hemodialysis (MHD) and their predictive value for CAC. METHODS: 100 patients receiving MHD were selected. Serum Klotho, fetuin-A, and MGP levels were detected by ELISA. CAC scores were assessed by coronary CT scan. Multifactor analysis was used to evaluate the risk factors affecting CAC. The ability of serum Klotho, fetuin-A, and MGP levels to diagnose CAC was evaluated by receiver operating characteristic curves. RESULTS: Serum Klotho, fetuin-A, and MGP were independent risk factors for CAC. Serum Klotho, fetuin-A, and MGP were valuable in the diagnosis of CAC in MHD patients. CONCLUSION: There is a close relationship between Klotho, fetuin-A, and MGP levels in MHD patients and CAC.


Assuntos
Biomarcadores , Proteínas de Ligação ao Cálcio , Doença da Artéria Coronariana , Proteínas da Matriz Extracelular , Glucuronidase , Proteínas Klotho , Proteína de Matriz Gla , Diálise Renal , Calcificação Vascular , alfa-2-Glicoproteína-HS , Humanos , Diálise Renal/efeitos adversos , Masculino , Feminino , Proteínas de Ligação ao Cálcio/sangue , Pessoa de Meia-Idade , alfa-2-Glicoproteína-HS/análise , alfa-2-Glicoproteína-HS/metabolismo , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico por imagem , Glucuronidase/sangue , Proteínas da Matriz Extracelular/sangue , Biomarcadores/sangue , Calcificação Vascular/sangue , Calcificação Vascular/diagnóstico por imagem , Idoso , Fatores de Risco , Ensaio de Imunoadsorção Enzimática , Adulto , Curva ROC , Calcinose/sangue , Calcinose/diagnóstico por imagem , Calcinose/etiologia , Valor Preditivo dos Testes
2.
Nat Commun ; 15(1): 1871, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424044

RESUMO

CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.


Assuntos
Neoplasias da Mama , Proteínas Inibidoras de Quinase Dependente de Ciclina , Humanos , Masculino , Pelve , Regiões Promotoras Genéticas , Próstata , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Inibidores de Proteínas Quinases
3.
Gastroenterology ; 165(2): 402-413.e13, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36894035

RESUMO

BACKGROUND & AIMS: Diagnosing gastric cancer (GC) while the disease remains eligible for surgical resection is challenging. In view of this clinical challenge, novel and robust biomarkers for early detection thus improving prognosis of GC are necessary. The present study is to develop a blood-based long noncoding RNA (LR) signature for the early-detection of GC. METHODS: The present 3-step study incorporated data from 2141 patients, including 888 with GC, 158 with chronic atrophic gastritis, 193 with intestinal metaplasia, 501 healthy donors, and 401 with other gastrointestinal cancers. The LR profile of stage I GC tissue samples were analyzed using transcriptomic profiling in discovery phase. The extracellular vesicle (EV)-derived LR signature was identified with a training cohort (n = 554) and validated with 2 external cohorts (n = 429 and n = 504) and a supplemental cohort (n = 69). RESULTS: In discovery phase, one LR (GClnc1) was found to be up-regulated in both tissue and circulating EV samples with an area under the curve (AUC) of 0.9369 (95% confidence interval [CI], 0.9073-0.9664) for early-stage GC (stage I/II). The diagnostic performance of this biomarker was further confirmed in 2 external validation cohorts (Xi'an cohort, AUC: 0.8839; 95% CI: 0.8336-0.9342; Beijing cohort, AUC: 0.9018; 95% CI: 0.8597-0.9439). Moreover, EV-derived GClnc1 robustly distinguished early-stage GC from precancerous lesions (chronic atrophic gastritis and intestinal metaplasia) and GC with negative traditional gastrointestinal biomarkers (CEA, CA72-4, and CA19-9). The low levels of this biomarker in postsurgery and other gastrointestinal tumor plasma samples indicated its GC specificity. CONCLUSIONS: EV-derived GClnc1 serves as a circulating biomarker for the early detection of GC, thus providing opportunities for curative surgery and improved survival outcomes.


Assuntos
Gastrite Atrófica , Neoplasias Gástricas , Humanos , Biomarcadores Tumorais/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirurgia , Gastrite Atrófica/diagnóstico , Gastrite Atrófica/genética , Antígeno CA-19-9 , Detecção Precoce de Câncer , Metaplasia
4.
J Biol Chem ; 299(4): 104572, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870680

RESUMO

Post-translational modifications (PTMs) regulate all aspects of protein function. Therefore, upstream regulators of PTMs, such as kinases, acetyltransferases, or methyltransferases, are potential therapeutic targets for human diseases, including cancer. To date, multiple inhibitors and/or agonists of these PTM upstream regulators are in clinical use, while others are still in development. However, these upstream regulators control not only the PTMs of disease-related target proteins but also other disease-irrelevant substrate proteins. Thus, nontargeted perturbing activities may introduce unwanted off-target toxicity issues that limit the use of these drugs in successful clinical applications. Therefore, alternative drugs that solely regulate a specific PTM of the disease-relevant protein target may provide a more precise effect in treating disease with relatively low side effects. To this end, chemically induced proximity has recently emerged as a powerful research tool, and several chemical inducers of proximity (CIPs) have been used to target and regulate protein ubiquitination, phosphorylation, acetylation, and glycosylation. These CIPs have a high potential to be translated into clinical drugs and several examples such as PROTACs and MGDs are now in clinical trials. Hence, more CIPs need to be developed to cover all types of PTMs, such as methylation and palmitoylation, thus providing a full spectrum of tools to regulate protein PTM in basic research and also in clinical application for effective cancer treatment.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Proteínas , Ubiquitinação , Fosforilação , Glicosilação , Acetilação , Neoplasias/tratamento farmacológico
6.
Emerg Med Int ; 2022: 9180696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119914

RESUMO

Objective: To explore the risk factors of lower extremity deep venous thrombosis (LEDVT) after surgery and discuss the treatment and nursing countermeasures. Methods: A retrospective analysis was conducted on 268 surgical patients admitted between July to December 2021. The factors associated with LEDVT were analyzed using the Logistic regression model. Further, LEDVT patients were assigned to a research group treated with targeted nursing to prevent LEDVT and a control group that used routine care. Coagulation function and inflammatory cytokines before and after nursing intervention were compared between groups. The assessment of patients' mobility employed the lower limb motor function part of the Fugel-Meyer Assessment (FMA), Harris Hip Score (HHS), and Barthel index (BI), and their psychological status was evaluated using the Kolcaba's General Comfort Questionnaire (GCQ) and Self-rating Anxiety/Depression Scale (SAS/SDS). Finally, patient satisfaction with the treatment service was investigated. Results: Logistic regression analysis showed that hypertension, limb paralysis, central venous catheterization of lower limbs, and bedridden time affect postoperative LEDVT in an independent way (P < 0.05). After the intervention, the coagulation function and inflammatory reaction were improved in both groups, with more significant improvement in the research group (P < 0.05). The research group also showed higher FMA, Harris, GCQ, and BI scores while lower SAS and SDS scores than the control group postnursing intervention (P < 0.05). Finally, a higher satisfaction rate was identified in the research group as compared to the control group (P < 0.05). Conclusion: Hypertension, limb paralysis, CVC of lower limbs, and bedridden time are all independent risk factors for LEDVT after surgery. The implementation of targeted nursing strategies for the above factors can effectively alleviate the hypercoagulable state of patients after operation, reduce inflammatory responses, and improve patient comfort, which is of great significance for preventing the occurrence of LEDVT.

7.
Front Pharmacol ; 13: 935155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959437

RESUMO

Background: Ovarian cancer is a common malignant tumor of the female reproductive tract, with the highest mortality rate. At present, no effective approaches to improve the survival rate exist. B. javanica Oil Emulsion (BJOE), an extract from B. javanica (L.) Merr. [Simaroubaceae], exhibits antitumor effects and can increase the sensitivity of radiotherapy and chemotherapy in many types of cancers. MiR-8485, a discovered miRNA, has been shown to be involved in the occurrence and development of tumors. The purpose of this study was to investigate the effect of BJOE on the regulation of mammalian rapamycin target protein (mTOR) autophagy signal pathway and related autophagy factors on ovarian cancer cells through miR-8485. Methods: The main chemical constituents of BJOE were determined by UHPLC-MS/MS. Detection of miR-8485 expression in ovarian cancer cells treated with BJOE by quantitative reverse transcription polymerase chain reaction (qRT-PCR). CCK8 experiment and flow cytometry were used to observe the effects of BJOE and overexpression of miR-8485 on cell proliferation and apoptosis. Then, monodansylcadaverine (MDC) fluorescence staining was used to observe the changes of autophagy vesicles before and after the effect of BJOE and overexpressed miR-8485 on cancer cells. Next, the binding sites between miR8485 and mammalian rapamycin target protein activator 3 (LAMTOR3) were detected by double luciferase reporter assay. Furthermore, qRT-PCR and Western blot experiments were used to explore the changes of autophagy-related factors LAMTOR3, mTOR and autophagy-related 13 (ATG13), and microtubule associated protein 1 light chain 3 beta (LC3-Ⅱ) after BJOE and overexpression of miR-8485, in addition to autophagy inhibitor (3-MA) for rescue experiment verification. Results: The qRT-PCR results showed that the expression of miR-8485 increased after BJOE treatment in the SKOV3 cell. The CCK8 assay and flow cytometry analysis revealed that both BJOE and miR-8485 overexpression inhibited the proliferation and promoted the apoptosis of the SKOV3 cell. MDC fluorescence staining showed that BJOE and miR-8485 overexpression led to a significant increase in autophagy vesicles in the SKOV3 cell. Double luciferase reporter assay confirmed the existence of binding sites between miR8485 and LAMTOR3. The results of qRT-PCR and Western blot showed that BJOE and overexpressed miR-8485 downregulated the expression of LAMTOR3 and mTOR and up-regulated the expression of ATG13 and LC3-Ⅱ. Conclusion: 1) MiR-8485 may be the key factor of BJOE in promoting autophagy and apoptosis and inhibiting cell proliferation of ovarian cancer cells; 2) BJOE may play an antitumor role by regulating LAMTOR3/mTOR/ATG13 signaling axis through miR-8485 to promote autophagy in ovarian cancer cells.

8.
Semin Cancer Biol ; 86(Pt 2): 269-279, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35798235

RESUMO

Tumor microenvironment (TME) composes of multiple cell types and non-cellular components, which supports the proliferation, metastasis and immune surveillance evasion of tumor cells, as well as accounts for the resistance to therapies. Therefore, therapeutic strategies using small molecule inhibitors (SMIs) and antibodies to block potential targets in TME are practical for cancer treatment. Targeted protein degradation using PROteolysis-TArgeting Chimera (PROTAC) technic has several advantages over traditional SMIs and antibodies, including overcoming drug resistance. Thus many PROTACs are currently under development for cancer treatment. In this review, we summarize the recent progress of PROTAC development that target TME pathways and propose the potential direction of future PROTAC technique to advance as novel cancer treatment options.


Assuntos
Descoberta de Drogas , Neoplasias , Humanos , Descoberta de Drogas/métodos , Proteólise , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ubiquitina-Proteína Ligases/metabolismo , Microambiente Tumoral
9.
Pharmacol Res ; 180: 106227, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452800

RESUMO

Alzheimer's disease (AD) has become a major public health problem that affects the elderly population. Therapeutic compounds with curative effects are not available due to the complex pathogenesis of AD. Daphnetin, a natural coumarin derivative and inhibitor of various kinases, has anti-inflammatory and antioxidant activities. In this study, we found that daphnetin improved spatial learning and memory in an amyloid precursor protein (APP)/presenilin 1 (PS1) double-transgenic mouse model of AD. Daphnetin markedly decreased the levels of amyloid-ß peptide 1-40 (Aß40) and 1-42 (Aß42) in the cerebral cortex, downregulated the expressions of enzymes involved in APP processing, e.g., beta-site APP-cleaving enzyme (BACE), nicastrin and presenilin enhancer protein 2 (PEN2). We further found the reduced serum levels of inflammatory factors, including interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and chemokine (C-C motif) ligand 3 (CCL3), while daphnetin increased total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) levels in the serum. Interestingly, daphnetin markedly decreased the expression of glial fibrillary acidic protein (GFAP) and the upstream regulatory molecule- phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in APP/PS1 mice, and mainly inhibited the phosphorylation of STAT3 at Ser727 to decrease GFAP expression evidenced in a LPS-activated glial cell model. These results suggest that daphnetin ameliorates cognitive deficits and that Aß deposition in APP/PS1 mice is mainly correlated with astrocyte activation and APP processing.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-1/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Umbeliferonas
10.
Cell Death Differ ; 29(9): 1730-1743, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35217790

RESUMO

MYC drives the tumorigenesis of human cancers, including prostate cancer (PrCa), thus deubiquitinase (DUB) that maintains high level of c-Myc oncoprotein is a rational therapeutic target. Several ubiquitin-specific protease (USP) family members of DUB have been reported to deubiquitinate c-Myc, but none of them is the physiological DUB for c-Myc in PrCa. By screening all the DUBs, here we reveal that OTUD6A is exclusively amplified and overexpressed in PrCa but not in other cancers, eliciting a prostatic-specific oncogenic role through deubiquitinating and stabilizing c-Myc oncoprotein. Moreover, genetic ablation of OTUD6A efficiently represses prostatic tumorigenesis of both human PrCa cells and the Hi-Myc transgenic PrCa mice, via reversing the metabolic remodeling caused by c-Myc overexpression in PrCa. These results indicate that OTUD6A is a physiological DUB for c-Myc in PrCa setting and specifically promotes prostatic tumorigenesis through stabilizing c-Myc oncoprotein, suggesting that OTUD6A could be a unique therapeutic target for Myc-driven PrCa.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Próstata , Neoplasias da Próstata , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Oncogenes , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
11.
Free Radic Biol Med ; 179: 11-23, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929314

RESUMO

Mitochondrion is the powerhouse of the cell. The research of nearly a century has expanded our understanding of mitochondrion, far beyond the view that mitochondrion is an important energy generator of cells. During the initiation, growth and survival of tumor cells, significant mitochondrial metabolic changes have taken place in the important enzymes of respiratory chain and tricarboxylic acid cycle, mitochondrial biogenesis and dynamics, oxidative stress regulation and molecular signaling. Therefore, mitochondrial metabolic proteins are the key mediators of tumorigenesis. Post-translational modification is the molecular switch that regulates protein function. Understanding how these mitochondria-related post-translational modification function during tumorigenesis will bring new ideas for the next generation of cancer treatment.


Assuntos
Mitocôndrias , Neoplasias , Ciclo do Ácido Cítrico , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional
12.
Trends Cell Biol ; 32(1): 30-44, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304958

RESUMO

Aberrancy in cell cycle progression is one of the fundamental mechanisms underlying tumorigenesis, making regulators of the cell cycle machinery rational anticancer therapeutic targets. A growing body of evidence indicates that the cell cycle regulatory pathway integrates into other hallmarks of cancer, including metabolism remodeling and immune escape. Thus, therapies against cell cycle machinery components can not only repress the division of cancer cells, but also reverse cancer metabolism and restore cancer immune surveillance. Besides the ongoing effects on the development of small molecule inhibitors (SMIs) of the cell cycle machinery, proteolysis targeting chimeras (PROTACs) have recently been used to target these oncogenic proteins related to cell cycle progression. Here, we discuss the rationale of cell cycle targeting therapies, particularly PROTACs, to more efficiently retard tumorigenesis.


Assuntos
Carcinogênese , Neoplasias , Ciclo Celular , Transformação Celular Neoplásica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteólise
13.
Front Cell Dev Biol ; 9: 678077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350175

RESUMO

PROteolysis-TArgeting Chimeras (PROTACs) is an emerging and promising approach to target intracellular proteins for ubiquitination-mediated degradation, including those so-called undruggable protein targets, such as transcriptional factors and scaffold proteins. To date, plenty of PROTACs have been developed to degrade various disease-relevant proteins, such as estrogen receptor (ER), androgen receptor (AR), RTK, and CDKs. However, the on-target off-tissue and off-target effect is one of the major limitation that prevents the usage of PROTACs in clinic. To this end, we and several other groups have recently developed light-controllable PROTACs, as the representative for the third generation controllable PROTACs, by using either photo-caging or photo-switch approaches. In this review, we summarize the emerging light-controllable PROTACs and the prospective for other potential ways to achieve temporospatial control of PROTACs.

14.
Cell Res ; 31(1): 80-93, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32669607

RESUMO

Whether glucose is predominantly metabolized via oxidative phosphorylation or glycolysis differs between quiescent versus proliferating cells, including tumor cells. However, how glucose metabolism is coordinated with cell cycle in mammalian cells remains elusive. Here, we report that mammalian cells predominantly utilize the tricarboxylic acid (TCA) cycle in G1 phase, but prefer glycolysis in S phase. Mechanistically, coupling cell cycle with metabolism is largely achieved by timely destruction of IDH1/2, key TCA cycle enzymes, in a Skp2-dependent manner. As such, depleting SKP2 abolishes cell cycle-dependent fluctuation of IDH1 protein abundance, leading to reduced glycolysis in S phase. Furthermore, elevated Skp2 abundance in prostate cancer cells destabilizes IDH1 to favor glycolysis and subsequent tumorigenesis. Therefore, our study reveals a mechanistic link between two cancer hallmarks, aberrant cell cycle and addiction to glycolysis, and provides the underlying mechanism for the coupling of metabolic fluctuation with periodic cell cycle in mammalian cells.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Glicólise/fisiologia , Proteínas Quinases Associadas a Fase S/metabolismo , Animais , Linhagem Celular , Fase G1 , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Nocodazol/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fase S , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Proteínas Quinases Associadas a Fase S/genética , Ubiquitinação
15.
Mol Nutr Food Res ; 65(3): e2000797, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33296142

RESUMO

SCOPE: Alzheimer's disease (AD) is the most prevalent form of dementia in the aging population; however, no effective therapy has been established. It has been previously demonstrated that daily intake of hydroxytyrosol (HT), a polyphenol in olive oil, at a daily dietary level mildly improves cognition in AD mice. In the present study, HT acetate (HT-ac), which is a natural derivative of HT in olive oil that exhibits better bioactivity than HT improves cognition. METHODS AND RESULTS: HT-ac to APP/PS1 is orally administered to transgenic mice and used Aß-treated neuronal cultures to explore the neuroprotective effects of HT-ac in preventing AD progression. It is found that HT-ac remarkably improved the escape latency, escape distance, and the number of platform crossings of AD mice in the water maze test by ameliorating neuronal apoptosis and decreasing inflammatory cytokine levels. It is further demonstrated that HT-ac stimulated the transcription of ERß and enhanced neuronal viability and electrophysiological activity in primary neurons but that these beneficial effects of HT-ac are abolished upon ERß deficiency. CONCLUSIONS: This study suggests that as the bioactive component of olive oil, HT-ac is a promising neuroprotective nutrient that may be used to alleviate AD-related cognitive dysfunction.


Assuntos
Acetatos/farmacologia , Catecóis/farmacologia , Cognição/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cognição/fisiologia , Modelos Animais de Doenças , Encefalite/tratamento farmacológico , Encefalite/patologia , Receptor beta de Estrogênio/metabolismo , Feminino , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Presenilina-1/genética , Ratos Wistar
16.
Oncogenesis ; 9(10): 98, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33130829

RESUMO

Cullin (CUL) proteins have critical roles in development and cancer, however few studies on CUL7 have been reported due to its characteristic molecular structure. CUL7 forms a complex with the ROC1 ring finger protein, and only two F-box proteins Fbxw8 and Fbxw11 have been shown to bind to CUL7. Interestingly, CUL7 can interact with its substrates by forming a novel complex that is independent of these two F-box proteins. The biological implications of CUL-ring ligase 7 (CRL7) suggest that the CRL7 may not only perform a proteolytic function but may also play a non-proteolytic role. Among the existing studied CRL7-based E3 ligases, CUL7 exerts both tumor promotion and suppression in a context-dependent manner. Currently, the mechanism of CUL7 in cancer remains unclear, and no studies have addressed potential therapies targeting CUL7. Consistent with the roles of the various CRL7 adaptors exhibit, targeting CRL7 might be an effective strategy for cancer prevention and treatment. We systematically describe the recent major advances in understanding the role of the CUL7 E3 ligase in cancer and further summarize its potential use in clinical therapy.

17.
Mol Oncol ; 14(12): 3169-3183, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070427

RESUMO

Dynamin-related protein 1 (Drp1) is a cytosolic protein responsible for mitochondrial fission and is essential in the initiation and development of several human diseases, including cancer. However, the regulation of Drp1, especially of its ubiquitination, remains unclear. In this study, we report that the ovarian tumor-associated protease deubiquitinase 6A (OTUD6A) deubiquitylates and stabilizes Drp1, thereby facilitating regulation of mitochondrial morphology and tumorigenesis. OTUD6A is upregulated in human patients with colorectal cancer. The depletion of OTUD6A leads to lower Drp1 levels and suppressed mitochondrial fission, and the affected cells are consequently less prone to tumorigenesis. Conversely, the overexpression of OTUD6A increases Drp1 levels and its protein half-life and enhances cancer cell growth. Therefore, our results reveal a novel upstream protein of Drp1, and its role in tumorigenesis that is played, in part, through the activation of mitochondrial fission mediated by Drp1.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Dinaminas/metabolismo , Dinâmica Mitocondrial , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica , Estabilidade Proteica , Ubiquitinação , Regulação para Cima/genética
18.
Acta Biochim Pol ; 67(2): 157-163, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32242402

RESUMO

Herein, we unfolded miR-98-5p mechanism in inflammatory bowel disease (IBD). IBD mouse model was established. The severity of colitis was assessed daily using the disease activity index (DAI). Murine peritoneal macrophages were stimulated by lipopolysaccharide (LPS). MiR-98-5p, tribbles homolog 1 (Trib1), M1 and M2 macrophage marker genes mRNA expression was analyzed. The relationship between miR-98-5p and Trib1 was explored using a luciferase reporter assay. The strategy of loss-of-function was used to explore the mechanism of miR-98-5p in macrophage polarization, inflammation and IBD. The results revealed that IBD mice had higher DAI index and miR-98-5p expression when compared to the Sham group. MiR-98-5p and Trib1 displayed a targeted regulation relationship. Knockdown of miR-98-5p transformed LPS-induced M1 macrophage polarization into M2 macrophage polarization and inhibited inflammation via up-regulating Trib1. However, shTrib1 reversed the effects. In vivo experiment, silencing of miR-98-5p, diminished the DAI and promoted M2 macrophage polarization. In conclusion, knockdown of miR-98-5p changed macrophage polarization to the M2 phenotype by increasing Trib1 expression, thereby alleviating IBD symptoms.


Assuntos
Polaridade Celular/genética , Doenças Inflamatórias Intestinais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Regulação para Cima/genética , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Células Cultivadas , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Doenças Inflamatórias Intestinais/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Mensageiro/genética
19.
Adv Exp Med Biol ; 1217: 123-146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31898226

RESUMO

SKP1-cullin-1-F-box-protein (SCF) E3 ubiquitin ligase complex is responsible for the degradation of proteins in a strictly regulated manner, through which it exerts pivotal roles in regulating various key cellular processes including cell cycle and division, apoptosis, and differentiation. The substrate specificity of the SCF complex largely depends on the distinct F-box proteins, which function in either tumor promotion or suppression or in a context-dependent manner. Among the 69 F-box proteins identified in human genome, FBW7, SKP2, and ß-TRCP have been extensively investigated among various types of cancer in respective of their roles in cancer development, progression, and metastasis. Moreover, several specific inhibitors have been developed to target those E3 ligases, and their efficiency in tumors has been determined. In this review, we provide a summary of the roles of SCF E3 ligases in cancer development, as well as the potential application of miRNA or specific inhibitors for cancer therapy.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas F-Box/metabolismo , Humanos , Neoplasias/patologia
20.
Gene ; 705: 167-176, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31026569

RESUMO

Hemorrhoid is a common and recurrent proctological disease, which is often accompanied by angiogenesis and edema. MicroRNAs in the DLK1-DIO3 imprinted clusters are involved in the development and pathogenesis of mammalian hemorrhoids. Results of the present study indicated multiple, differential expression of DLK1-DIO3 imprinted cluster microRNA between hemorrhoid and normal tissues, where miR-412-5p expression in hemorrhoid tissue was significantly decreased. Fluorescein reporter assays showed that miR-412-5p silenced Xpo1 mRNA expression by targeting its 3'-UTR. Overexpression of miR-412-5p in human umbilical vein endothelial cells (HUVECs) indicated that proliferation, migration and formation of vascular structures in HUVECs were inhibited in vitro. In addition, overexpression of miR-412-5p significantly inhibited Xpo1 expression and promoted upregulation of the p53 protein and its retention in the nucleus. Simultaneously, expression of p66SHC and p16 proteins was activated. In summary, downregulation of endogenous miR-412-5p expression in hemorrhoid vascular endothelial cells leads to high expression of the target gene Xpo1 and translocation of the p53 protein out of the nucleus, rendering it unable to activate p66SHC and p16. This ultimately weakens regulation of the vascular endothelial cell cycle, thereby accelerating the division of hemorrhoid vascular endothelial cells, leading to angiogenesis.


Assuntos
Hemorroidas/genética , Carioferinas/genética , MicroRNAs/genética , Neovascularização Patológica/genética , Receptores Citoplasmáticos e Nucleares/genética , Regiões 3' não Traduzidas , Adulto , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Impressão Genômica , Hemorroidas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA