Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(38): e2123117119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099298

RESUMO

Acinetobacter baumannii is a clinically important, predominantly health care-associated gram-negative bacterium with high rates of emerging resistance worldwide. Given the urgent need for novel antibacterial therapies against A. baumannii, we focused on inhibiting lipoprotein biosynthesis, a pathway that is essential for envelope biogenesis in gram-negative bacteria. The natural product globomycin, which inhibits the essential type II signal peptidase prolipoprotein signal peptidase (LspA), is ineffective against wild-type A. baumannii clinical isolates due to its poor penetration through the outer membrane. Here, we describe a globomycin analog, G5132, that is more potent against wild-type and clinical A. baumannii isolates. Mutations leading to G5132 resistance in A. baumannii map to the signal peptide of a single hypothetical gene, which we confirm encodes an alanine-rich lipoprotein and have renamed lirL (prolipoprotein signal peptidase inhibitor resistance lipoprotein). LirL is a highly abundant lipoprotein primarily localized to the inner membrane. Deletion of lirL leads to G5132 resistance, inefficient cell division, increased sensitivity to serum, and attenuated virulence. Signal peptide mutations that confer resistance to G5132 lead to the accumulation of diacylglyceryl-modified LirL prolipoprotein in untreated cells without significant loss in cell viability, suggesting that these mutations overcome a block in lipoprotein biosynthetic flux by decreasing LirL prolipoprotein substrate sensitivity to processing by LspA. This study characterizes a lipoprotein that plays a critical role in resistance to LspA inhibitors and validates lipoprotein biosynthesis as a antibacterial target in A. baumannii.


Assuntos
Acinetobacter baumannii , Antibacterianos , Ácido Aspártico Endopeptidases , Proteínas de Bactérias , Farmacorresistência Bacteriana , Furanos , Deleção de Genes , Lipoproteínas , Inibidores de Proteases , Piridinas , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Ácido Aspártico Endopeptidases/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Furanos/farmacologia , Lipoproteínas/biossíntese , Lipoproteínas/genética , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Sinais Direcionadores de Proteínas/genética , Piridinas/farmacologia
2.
mBio ; 11(5)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900806

RESUMO

Clinical development of antibiotics with novel mechanisms of action to kill pathogenic bacteria is challenging, in part, due to the inevitable emergence of resistance. A phenomenon of potential clinical importance that is broadly overlooked in preclinical development is heteroresistance, an often-unstable phenotype in which subpopulations of bacterial cells show decreased antibiotic susceptibility relative to the dominant population. Here, we describe a new globomycin analog, G0790, with potent activity against the Escherichia coli type II signal peptidase LspA and uncover two novel resistance mechanisms to G0790 in the clinical uropathogenic E. coli strain CFT073. Building on the previous finding that complete deletion of Lpp, the major Gram-negative outer membrane lipoprotein, leads to globomycin resistance, we also find that an unexpectedly modest decrease in Lpp levels mediated by insertion-based disruption of regulatory elements is sufficient to confer G0790 resistance and increase sensitivity to serum killing. In addition, we describe a heteroresistance phenotype mediated by genomic amplifications of lspA that result in increased LspA levels sufficient to overcome inhibition by G0790 in culture. These genomic amplifications are highly unstable and are lost after as few as two subcultures in the absence of G0790, which places amplification-containing resistant strains at high risk of being misclassified as susceptible by routine antimicrobial susceptibility testing. In summary, our study uncovers two vastly different mechanisms of resistance to LspA inhibitors in E. coli and emphasizes the importance of considering the potential impact of unstable and heterogenous phenotypes when developing antibiotics for clinical use.IMPORTANCE Despite increasing evidence suggesting that antibiotic heteroresistance can lead to treatment failure, the significance of this phenomena in the clinic is not well understood, because many clinical antibiotic susceptibility testing approaches lack the resolution needed to reliably classify heteroresistant strains. Here we present G0790, a new globomycin analog and potent inhibitor of the Escherichia coli type II signal peptidase LspA. We demonstrate that in addition to previously known mechanisms of resistance to LspA inhibitors, unstable genomic amplifications containing lspA can lead to modest yet biologically significant increases in LspA protein levels that confer a heteroresistance phenotype.


Assuntos
Antibacterianos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana/genética , Lipoproteínas/metabolismo , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/enzimologia , Animais , Ácido Aspártico Endopeptidases/genética , Proteínas de Bactérias/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/farmacologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade
3.
Traffic ; 7(10): 1378-87, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16978392

RESUMO

Vac8p is a multifunctional yeast protein involved in several distinct vacuolar events including vacuole inheritance, vacuole homotypic fusion, nucleus-vacuole junction formation and the cytoplasm to vacuole protein targeting pathway. Vac8p associates with the vacuole membrane via myristoylation and palmitoylation. Vac8p has three putative palmitoylation sites, at Cys 4, 5 and 7. Here, we show that each of these cysteines may serve as a palmitoylation site. Palmitoylation at Cys 7 alone provides partial function of Vac8p, whereas palmitoylation at either Cys 4 or Cys 5 alone is sufficient for Vac8p function. In the former mutant, there is a severe defect in the localization of Vac8p to the vacuole membrane, while in the latter mutants, there is a partial defect in the localization of Vac8p. In addition, our studies provide evidence that palmitoylation targets Vac8p to specific membrane subdomains.


Assuntos
Membrana Celular/metabolismo , Lipoproteínas/metabolismo , Microdomínios da Membrana , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Sequência de Aminoácidos , Cafeína/farmacologia , Membrana Celular/ultraestrutura , Núcleo Celular/metabolismo , Cisteína/metabolismo , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipoproteínas/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Inibidores de Fosfodiesterase/farmacologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Vacúolos/ultraestrutura , Proteínas de Transporte Vesicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA