Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Microbiol Immunol ; 421: 229-265, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123892

RESUMO

Helicobacter pylori is a prevalent human pathogen that successfully establishes chronic infection, which leads to clinically significant gastric diseases including chronic gastritis, peptic ulcer disease (PUD), and gastric cancer (GC). H. pylori is able to produce a persistent infection due in large part to its ability to hijack the host immune response. The host adaptive immune response is activated to strategically and specifically attack pathogens and normally clears them from the infected host. Since B and T lymphocytes are central mediators of adaptive immunity, in this chapter we review their development and the fundamental mechanisms regulating their activation in order to understand how some of the normal processes are subverted by H. pylori. In this review, we place particular emphasis on the CD4+ T cell responses, their subtypes, and regulatory mechanisms because of the expanding literature in this area related to H. pylori. T lymphocyte differentiation and function are finely orchestrated through a series of cell-cell interactions, which include immune checkpoint receptors. Among the immune checkpoint receptor family, there are some with inhibitory properties that are exploited by tumor cells to facilitate their immune evasion. Gastric epithelial cells (GECs), which act as antigen-presenting cells (APCs) in the gastric mucosa, are induced by H. pylori to express immune checkpoint receptors known to sway T lymphocyte function and thus circumvent effective T effector lymphocyte responses. This chapter reviews these and other mechanisms used by H. pylori to interfere with host immunity in order to persist.


Assuntos
Linfócitos B/patologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Evasão da Resposta Imune , Linfócitos T/patologia , Linfócitos B/imunologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Humanos , Linfócitos T/imunologia
2.
PLoS One ; 12(6): e0179084, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591228

RESUMO

We evaluated the importance of neutrophils in the development of chronic lesions caused by L. Viannia spp. using the hamster as experimental model of American Cutaneous Leishmaniasis (ACL). Neutrophils infiltrated the lesion within the first six hours post-infection. Inhibition of this early infiltration using a polyclonal antibody or cyclophosphamide was associated with transient parasite control but the protective effect vanished when lesions became clinically apparent. At lesion onset (approximately 10 days p.i.), there was an increased proportion of both uninfected and infected macrophages, and subsequently a second wave of neutrophils infiltrated the lesion (after 19 days p.i.) This second neutrophil infiltration was associated with lesion necrosis and ulceration (R2 = 0.75) and maximum parasite burden. Intradermal delivery of N-formylmethionyl-leucyl-phenylalanine (fMLP), aimed to increase neutrophil infiltration, resulted in larger lesions with marked necrosis and higher parasite burden than in mock treated groups (p<0.001 each). In contrast, reduced neutrophil infiltration via cyclophosphamide-mediated depletion led to more benign lesions and lower parasite loads compared to controls (p<0.001 each). Neutrophils of the second wave expressed significantly lower GM-CSF, reactive oxygen species and nitric oxide than those of the first wave, suggesting that they had less efficient anti-leishmania activity. However, there was increased inflammatory cytokines and expression of neutrophil proteases (myeloperoxidase, cathepsin G and elastase) in lesions during the second wave of neutrophil infiltration compared with the levels reached during the first wave (6h p.i.). This suggests that augmented neutrophil proteases and inflammatory cytokines during the secondary wave of neutrophils could contribute to skin inflammation, ulceration and necrosis in ACL. The overall results indicate that neutrophils were unable to clear the infection in this model, and that the second wave of neutrophils played an important role in the severity of ACL.


Assuntos
Inflamação/sangue , Leishmaniose Cutânea/sangue , Necrose/sangue , Infiltração de Neutrófilos , Animais , Cricetinae , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/parasitologia , Inflamação/fisiopatologia , Leishmania/patogenicidade , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/fisiopatologia , Macrófagos/patologia , Necrose/parasitologia , Necrose/fisiopatologia , Neutrófilos/patologia , Óxido Nítrico/metabolismo , Carga Parasitária , Espécies Reativas de Oxigênio/metabolismo , Estados Unidos
3.
Antimicrob Agents Chemother ; 60(6): 3717-29, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067323

RESUMO

Antibiotic resistance in medically relevant bacterial pathogens, coupled with a paucity of novel antimicrobial discoveries, represents a pressing global crisis. Traditional drug discovery is an inefficient and costly process; however, systematic screening of Food and Drug Administration (FDA)-approved therapeutics for other indications in humans offers a rapid alternative approach. In this study, we screened a library of 780 FDA-approved drugs to identify molecules that rendered RAW 264.7 murine macrophages resistant to cytotoxicity induced by the highly virulent Yersinia pestis CO92 strain. Of these compounds, we identified 94 not classified as antibiotics as being effective at preventing Y. pestis-induced cytotoxicity. A total of 17 prioritized drugs, based on efficacy in in vitro screens, were chosen for further evaluation in a murine model of pneumonic plague to delineate if in vitro efficacy could be translated in vivo Three drugs, doxapram (DXP), amoxapine (AXPN), and trifluoperazine (TFP), increased animal survivability despite not exhibiting any direct bacteriostatic or bactericidal effect on Y. pestis and having no modulating effect on crucial Y. pestis virulence factors. These findings suggested that DXP, AXPN, and TFP may modulate host cell pathways necessary for disease pathogenesis. Finally, to further assess the broad applicability of drugs identified from in vitro screens, the therapeutic potential of TFP, the most efficacious drug in vivo, was evaluated in murine models of Salmonella enterica serovar Typhimurium and Clostridium difficile infections. In both models, TFP treatment resulted in increased survivability of infected animals. Taken together, these results demonstrate the broad applicability and potential use of nonantibiotic FDA-approved drugs to combat respiratory and gastrointestinal bacterial pathogens.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Reposicionamento de Medicamentos , Enterocolite Pseudomembranosa/tratamento farmacológico , Peste/tratamento farmacológico , Infecções por Salmonella/tratamento farmacológico , Trifluoperazina/farmacologia , Amoxapina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , Modelos Animais de Doenças , Doxapram/farmacologia , Esquema de Medicação , Enterocolite Pseudomembranosa/metabolismo , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/mortalidade , Feminino , Ensaios de Triagem em Larga Escala , Macrófagos/efeitos dos fármacos , Camundongos , Peste/metabolismo , Peste/microbiologia , Peste/mortalidade , Medicamentos sob Prescrição/farmacologia , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Infecções por Salmonella/mortalidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Bibliotecas de Moléculas Pequenas/farmacologia , Análise de Sobrevida , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/patogenicidade
4.
Antimicrob Agents Chemother ; 59(10): 6463-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239994

RESUMO

Current treatments for cutaneous and visceral leishmaniasis are toxic, expensive, difficult to administer, and limited in efficacy and availability. Disulfiram has primarily been used to treat alcoholism. More recently, it has shown some efficacy as therapy against protozoan pathogens and certain cancers, suggesting a wide range of biological activities. We used an ex vivo system to screen several thiuram disulfide compounds for antileishmanial activity. We found five compounds (compound identifier [CID] 7188, 5455, 95876, 12892, and 3117 [disulfiram]) with anti-Leishmania activity at nanomolar concentrations. We further evaluated these compounds with the addition of divalent metal salts based on studies that indicated these salts could potentiate the action of disulfiram. In addition, clinical studies suggested that zinc has some efficacy in treating cutaneous leishmaniasis. Several divalent metal salts were evaluated at 1 µM, which is lower than the normal levels of copper and zinc in plasma of healthy individuals. The leishmanicidal activity of disulfiram and CID 7188 were enhanced by several divalent metal salts at 1 µM. The in vitro therapeutic index (IVTI) of disulfiram and CID 7188 increased 12- and 2.3-fold, respectively, against L. major when combined with ZnCl2. The combination of disulfiram with ZnSO4 resulted in a 1.8-fold increase in IVTI against L. donovani. This novel combination of thiuram disulfides and divalent metal ions salts could have application as topical and/or oral therapies for treatment of cutaneous and visceral leishmaniasis.


Assuntos
Cloretos/farmacologia , Dissulfiram/farmacologia , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Tiram/farmacologia , Tripanossomicidas/farmacologia , Compostos de Zinco/farmacologia , Sulfato de Zinco/farmacologia , Animais , Cátions Bivalentes , Linhagem Celular , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células Hep G2 , Humanos , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania major/efeitos dos fármacos , Leishmania major/crescimento & desenvolvimento , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais
5.
Am J Trop Med Hyg ; 86(5): 812-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22556079

RESUMO

Little information is available on transplacental transmission of Leishmania spp. We determined the frequency and impact of congenital infection caused by Leishmania panamensis or L. donovani in experimentally infected hamsters. A polymerase chain reaction showed that congenital transmission occurred in 25.8% (24 of 93) of offspring born to L. panamensis-infected hamsters and 14.6% (11 of 75) offspring born to L. donovani-infected hamsters. Mortality during lactation was higher in offspring born to L. panamensis-infected hamsters and offspring born to L. donovani-infected hamsters than controls, and lymphoproliferation to Leishmania was more frequent in offspring born to L. panamensis-infected hamsters (17.4%, 11 of 63) than in offspring born to L. donovani-infected hamsters (8.5%, 3 of 35). After weaning, only offspring born to L. donovani-infected hamsters had lower weight gain (P < 0.001) and hematocrit levels (P = 0.0045) than controls. Challenge of offspring born to L. panamensis-infected hamsters with L. panamensis showed no differences in lesion evolution, and offspring born to L. donovani-infected hamsters were more susceptible to L. donovani challenge than controls. Consequently, prenatal exposure of hamsters to L. donovani significantly increased the mortality risk and susceptibility to secondary homologous infection.


Assuntos
Transmissão Vertical de Doenças Infecciosas , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/transmissão , Animais , Cricetinae , Modelos Animais de Doenças , Feminino , Imunidade , Leishmaniose Visceral/patologia , Fígado/parasitologia , Fígado/patologia , Masculino , Troca Materno-Fetal/imunologia , Gravidez , Complicações Parasitárias na Gravidez/imunologia , Complicações Parasitárias na Gravidez/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Baço/parasitologia , Baço/patologia
6.
J Leukoc Biol ; 83(6): 1413-22, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18347075

RESUMO

The maintenance of host defense during pregnancy may depend on heightened innate immunity. We evaluated the immune response of pregnant hamsters during early infection with Leishmania (Viannia) panamensis, a cause of American cutaneous leishmaniasis. At 7 days post-infection, pregnant animals showed a lower parasite burden compared with nonpregnant controls at the cutaneous infection site (P=0.0098) and draining lymph node (P=0.02). Resident peritoneal macrophages and neutrophils from pregnant animals had enhanced Leishmania killing capacity compared with nonpregnant controls (P=0.018 each). This enhanced resistance during pregnancy was associated with increased expression of inducible NO synthase (iNOS) mRNA in lymph node cells (P=0.02) and higher NO production by neutrophils (P=0.0001). Macrophages from nonpregnant hamsters infected with L. panamensis released high amounts of NO upon estrogen exposure (P=0.05), and addition of the iNOS inhibitor L-N6-(1-iminoethyl) lysine blocked the induction of NO production (P=0.02). Infected, nonpregnant females treated with estrogen showed a higher percentage of cells producing NO at the infection site than controls (P=0.001), which correlated with lower parasite burdens (P=0.036). Cultured macrophages or neutrophils from estrogen-treated hamsters showed significantly increased NO production and Leishmania killing compared with untreated controls. iNOS was identified as the likely source of estrogen-induced NO in primed and naïve macrophages, as increased transcription was evident by real-time PCR. Thus, the innate defense against Leishmania infection is heightened during pregnancy, at least in part as a result of estrogen-mediated up-regulation of iNOS expression and NO production.


Assuntos
Estrogênios/farmacologia , Leishmaniose Cutânea/imunologia , Óxido Nítrico/biossíntese , Complicações Parasitárias na Gravidez/imunologia , Animais , Cricetinae , Citocinas/biossíntese , Feminino , Imunidade Inata , Macrófagos/imunologia , Neutrófilos/imunologia , Óxido Nítrico Sintase Tipo II/análise , Gravidez , Pregnanos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA