Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Traffic ; 23(1): 63-80, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34729868

RESUMO

Lipid droplets (LDs) are involved in viral infections, but exactly how remains unclear. Here, we study the hepatitis C virus (HCV) whose core capsid protein binds to LDs but is also involved in the assembly of virions at the endoplasmic reticulum (ER) bilayer. We found that the amphipathic helix-containing domain of core, D2, senses triglycerides (TGs) rather than LDs per se. In the absence of LDs, D2 can bind to the ER membrane but only if TG molecules are present in the bilayer. Accordingly, the pharmacological inhibition of the diacylglycerol O-acyltransferase enzymes, mediating TG synthesis in the ER, inhibits D2 association with the bilayer. We found that TG molecules enable D2 to fold into alpha helices. Sequence analysis reveals that D2 resembles the apoE lipid-binding region. Our data support that TG in LDs promotes the folding of core, which subsequently relocalizes to contiguous ER regions. During this motion, core may carry TG molecules to these regions where HCV lipoviroparticles likely assemble. Consistent with this model, the inhibition of Arf1/COPI, which decreases LD surface accessibility to proteins and ER-LD material exchange, severely impedes the assembly of virions. Altogether, our data uncover a critical function of TG in the folding of core and HCV replication and reveals, more broadly, how TG accumulation in the ER may provoke the binding of soluble amphipathic helix-containing proteins to the ER bilayer.


Assuntos
Retículo Endoplasmático , Hepatite C , Retículo Endoplasmático/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Triglicerídeos/metabolismo , Proteínas do Core Viral/metabolismo
2.
PLoS One ; 15(7): e0236447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32697788

RESUMO

The hepatitis C virus (HCV) nonstructural protein 3-4A (NS3-4A) protease is a key component of the viral replication complex and the target of protease inhibitors used in current clinical practice. By cleaving and thereby inactivating selected host factors it also plays a role in the persistence and pathogenesis of hepatitis C. Here, we describe ovarian cancer immunoreactive antigen domain containing protein 1 (OCIAD1) as a novel cellular substrate of the HCV NS3-4A protease. OCIAD1 was identified by quantitative proteomics involving stable isotopic labeling using amino acids in cell culture coupled with mass spectrometry. It is a poorly characterized membrane protein believed to be involved in cancer development. OCIAD1 is cleaved by the NS3-4A protease at Cys 38, close to a predicted transmembrane segment. Cleavage was observed in heterologous expression systems, the replicon and cell culture-derived HCV systems, as well as in liver biopsies from patients with chronic hepatitis C. NS3-4A proteases from diverse hepacivirus species efficiently cleaved OCIAD1. The subcellular localization of OCIAD1 on mitochondria was not altered by NS3-4A-mediated cleavage. Interestingly, OCIAD2, a homolog of OCIAD1 with a cysteine residue in a similar position and identical subcellular localization, was not cleaved by NS3-4A. Domain swapping experiments revealed that the sequence surrounding the cleavage site as well as the predicted transmembrane segment contribute to substrate selectivity. Overexpression as well as knock down and rescue experiments did not affect the HCV life cycle in vitro, raising the possibility that OCIAD1 may be involved in the pathogenesis of hepatitis C in vivo.


Assuntos
Hepacivirus/enzimologia , Hepatite C Crônica/patologia , Interações entre Hospedeiro e Microrganismos , Proteínas de Neoplasias/metabolismo , Proteínas não Estruturais Virais/metabolismo , Biópsia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HEK293 , Hepacivirus/patogenicidade , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Humanos , Fígado/patologia , Fígado/virologia , Mitocôndrias/metabolismo , Modelos Moleculares , Proteínas de Neoplasias/genética , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Domínios Proteicos/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/genética , Proteínas não Estruturais Virais/antagonistas & inibidores
3.
PLoS Pathog ; 14(2): e1006863, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29415072

RESUMO

Over the recent years, several homologues with varying degrees of genetic relatedness to hepatitis C virus (HCV) have been identified in a wide range of mammalian species. HCV infectious life cycle relies on a first critical proteolytic event of its single polyprotein, which is carried out by nonstructural protein 2 (NS2) and allows replicase assembly and genome replication. In this study, we characterized and evaluated the conservation of the proteolytic mode of action and regulatory mechanisms of NS2 across HCV and animal hepaciviruses. We first demonstrated that NS2 from equine, bat, rodent, New and Old World primate hepaciviruses also are cysteine proteases. Using tagged viral protein precursors and catalytic triad mutants, NS2 of equine NPHV and simian GBV-B, which are the most closely and distantly related viruses to HCV, respectively, were shown to function, like HCV NS2 as dimeric proteases with two composite active sites. Consistent with the reported essential role for NS3 N-terminal domain (NS3N) as HCV NS2 protease cofactor via NS3N key hydrophobic surface patch, we showed by gain/loss of function mutagenesis studies that some heterologous hepacivirus NS3N may act as cofactors for HCV NS2 provided that HCV-like hydrophobic residues are conserved. Unprecedently, however, we also observed efficient intrinsic proteolytic activity of NS2 protease in the absence of NS3 moiety in the context of C-terminal tag fusions via flexible linkers both in transiently transfected cells for all hepaciviruses studied and in the context of HCV dicistronic full-length genomes. These findings suggest that NS3N acts as a regulatory rather than essential cofactor for hepacivirus NS2 protease. Overall, unique features of NS2 including enzymatic function as dimers with two composite active sites and additional NS3-independent proteolytic activity are conserved across hepaciviruses regardless of their genetic distances, highlighting their functional significance in hepacivirus life cycle.


Assuntos
Domínio Catalítico , Peptídeo Hidrolases/metabolismo , Proteólise , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico/genética , Quirópteros , Hepacivirus , Cavalos , Humanos , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Filogenia , Domínios Proteicos/genética , Roedores , Alinhamento de Sequência , Proteínas não Estruturais Virais/genética
4.
PLoS Pathog ; 13(12): e1006774, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253880

RESUMO

Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.


Assuntos
Hepacivirus/fisiologia , Hepacivirus/patogenicidade , Proteínas do Envelope Viral/fisiologia , Proteínas Virais/fisiologia , Sequência de Aminoácidos , Linhagem Celular , Células HEK293 , Hepacivirus/genética , Hepatite C/etiologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Modelos Biológicos , Mutação , Processamento de Proteína Pós-Traducional , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/fisiologia , Proteínas Virais/química , Proteínas Virais/genética , Virulência/genética , Virulência/fisiologia , Montagem de Vírus/genética , Montagem de Vírus/fisiologia
5.
PLoS Pathog ; 11(11): e1005297, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26588073

RESUMO

The hepatitis C virus (HCV) p7 protein is required for infectious virus production via its role in assembly and ion channel activity. Although NMR structures of p7 have been reported, the location of secondary structural elements and orientation of the p7 transmembrane domains differ among models. Furthermore, the p7 structure-function relationship remains unclear. Here, extensive mutagenesis, coupled with infectious virus production phenotyping and molecular modeling, demonstrates that the N-terminal helical region plays a previously underappreciated yet critical functional role, especially with respect to E2/p7 cleavage efficiency. Interrogation of specific N-terminal helix residues identified as having p7-specific defects and predicted to point toward the channel pore, in a context of independent E2/p7 cleavage, further supports p7 as a structurally plastic, minimalist ion channel. Together, our findings indicate that the p7 N-terminal helical region is critical for E2/p7 processing, protein-protein interactions, ion channel activity, and infectious HCV production.


Assuntos
Hepacivirus/metabolismo , Canais Iônicos/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Humanos , Modelos Moleculares , Montagem de Vírus , Replicação Viral
6.
Protein Expr Purif ; 116: 1-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26325423

RESUMO

Non-structural protein 2 (NS2) of the hepatitis C virus (HCV) is an integral membrane protein that contains a cysteine protease and that plays a central organizing role in assembly of infectious progeny virions. While the crystal structure of the protease domain has been solved, the NS2 full-length form remains biochemically and structurally uncharacterized because recombinant NS2 could not be prepared in sufficient quantities from cell-based systems. We show here that functional NS2 in the context of the NS2-NS3pro precursor protein, ensuring NS2-NS3 cleavage, can be efficiently expressed by using a wheat germ cell-free expression system. In this same system, we subsequently successfully produce and purify milligram amounts of a detergent-solubilized form of full-length NS2 exhibiting the expected secondary structure content. Furthermore, immuno-electron microscopy analyses of reconstituted proteoliposomes demonstrate NS2 association with model membranes.


Assuntos
Hepacivirus/química , Hepacivirus/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Sistema Livre de Células/metabolismo , Cromatografia em Gel , Clonagem Molecular , Detergentes/química , Expressão Gênica , Hepatite C/virologia , Lipossomos/química , Lipídeos de Membrana/química , Dados de Sequência Molecular , Plasmídeos/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Triticum/genética , Proteínas não Estruturais Virais/isolamento & purificação
7.
J Virol ; 89(20): 10333-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246575

RESUMO

UNLABELLED: In hepatitis C virus (HCV)-infected cells, the envelope glycoproteins E1 and E2 assemble as a heterodimer. To investigate potential changes in the oligomerization of virion-associated envelope proteins, we performed SDS-PAGE under reducing conditions but without thermal denaturation. This revealed the presence of SDS-resistant trimers of E1 in the context of cell-cultured HCV (HCVcc) as well as in the context of HCV pseudoparticles (HCVpp). The formation of E1 trimers was found to depend on the coexpression of E2. To further understand the origin of E1 trimer formation, we coexpressed in bacteria the transmembrane (TM) domains of E1 (TME1) and E2 (TME2) fused to reporter proteins and analyzed the fusion proteins by SDS-PAGE and Western blotting. As expected for strongly interacting TM domains, TME1-TME2 heterodimers resistant to SDS were observed. These analyses also revealed homodimers and homotrimers of TME1, indicating that such complexes are stable species. The N-terminal segment of TME1 exhibits a highly conserved GxxxG sequence, a motif that is well documented to be involved in intramembrane protein-protein interactions. Single or double mutations of the glycine residues (Gly354 and Gly358) in this motif markedly decreased or abrogated the formation of TME1 homotrimers in bacteria, as well as homotrimers of E1 in both HCVpp and HCVcc systems. A concomitant loss of infectivity was observed, indicating that the trimeric form of E1 is essential for virus infectivity. Taken together, these results indicate that E1E2 heterodimers form trimers on HCV particles, and they support the hypothesis that E1 could be a fusion protein. IMPORTANCE: HCV glycoproteins E1 and E2 play an essential role in virus entry into liver cells as well as in virion morphogenesis. In infected cells, these two proteins form a complex in which E2 interacts with cellular receptors, whereas the function of E1 remains poorly understood. However, recent structural data suggest that E1 could be the protein responsible for the process of fusion between viral and cellular membranes. Here we investigated the oligomeric state of HCV envelope glycoproteins. We demonstrate that E1 forms functional trimers after virion assembly and that in addition to the requirement for E2, a determinant for this oligomerization is present in a conserved GxxxG motif located within the E1 transmembrane domain. Taken together, these results indicate that a rearrangement of E1E2 heterodimer complexes likely occurs during the assembly of HCV particles to yield a trimeric form of the E1E2 heterodimer. Gaining structural information on this trimer will be helpful for the design of an anti-HCV vaccine.


Assuntos
Hepacivirus/química , Proteínas Recombinantes de Fusão/química , Proteínas do Envelope Viral/química , Vírion/química , Motivos de Aminoácidos , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hepacivirus/genética , Hepacivirus/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Proteínas do Envelope Viral/genética , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus , Internalização do Vírus
8.
PLoS Pathog ; 10(10): e1004501, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25392992

RESUMO

Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.


Assuntos
Hepacivirus/metabolismo , Hepatite C/virologia , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Hepacivirus/química , Hepacivirus/genética , Hepacivirus/ultraestrutura , Humanos , Modelos Moleculares , Modelos Estruturais , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Viral/genética , Replicon , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
9.
J Virol ; 88(18): 10584-97, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24990994

RESUMO

UNLABELLED: In spite of the high variability of its sequence, hepatitis C virus (HCV) envelope glycoprotein E2 contains several conserved regions. In this study, we explored the structural and functional features of the highly conserved E2 segment from amino acid (aa) 502 to 520, which had been proposed as a fusion peptide and shown to strongly overlap a potential conserved neutralizing epitope. For this purpose, we used reverse genetics to introduce point mutations within this region, and we characterized the phenotypes of these mutants in the light of the recently published structure of E2. The functional analyses showed that their phenotypes are in agreement with the positions of the corresponding residues in the E2 crystal structure. In contrast, our data ruled out the involvement of this region in membrane fusion, and they indicate that alternative conformations would be necessary to expose the potential neutralizing epitope present in this segment. Of particular interest, we identified three specific mutations (Y507L, V514A, and V515A) located within this neutralizing epitope which only mildly reduced infectivity and showed no assembly defect. These mutations modulated HCV dependence on the viral receptor SRB1, and/or they also modulated virion sensitivity to neutralizing antibodies. Importantly, their characterization also showed that amino acids Y507, V514, and V515 contribute to E2 interaction with HCV receptor CD81. In conclusion, our data show that the highly conserved E2 segment from aa 502 to 520 plays a key role in cell entry by influencing the association of the viral particle with coreceptors and neutralizing antibodies. IMPORTANCE: Hepatitis C virus (HCV) envelope proteins E1 and E2 exhibit sequence variability. However, some segments of the envelope proteins are highly conserved, suggesting that these sequences play a key role at some steps of the HCV life cycle. In this work, we characterized the function and structure of a highly conserved E2 region that is targeted by neutralizing antibodies and had been proposed as a fusion peptide. Our data ruled out the involvement of this region in membrane fusion but allowed for the identification of new residues modulating the interaction of the virus with entry factors and its sensitivity to neutralizing antibodies. Moreover, structural data suggest that alternative conformations could exist for E2, which would explain the presence of a partially masked neutralizing epitope in this segment in the currently available E2 structure. Overall, our findings highlight the importance of conserved regions in the sequences of HCV envelope proteins.


Assuntos
Hepacivirus/metabolismo , Hepatite C/metabolismo , Receptores Virais/metabolismo , Receptores Depuradores Classe B/metabolismo , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , Sequência Conservada , Hepacivirus/química , Hepacivirus/genética , Hepatite C/genética , Hepatite C/virologia , Humanos , Modelos Moleculares , Ligação Proteica , Receptores Virais/genética , Receptores Depuradores Classe B/genética , Alinhamento de Sequência , Tetraspanina 28/genética , Proteínas do Envelope Viral/genética
10.
Gastroenterology ; 147(5): 1094-105.e25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25046163

RESUMO

BACKGROUND & AIMS: Direct-acting antivirals that target nonstructural protein 5A (NS5A), such as daclatasvir, have high potency against the hepatitis C virus (HCV). They are promising clinical candidates, yet little is known about their antiviral mechanisms. We investigated the mechanisms of daclatasvir derivatives. METHODS: We used a combination of biochemical assays, in silico docking models, and high-resolution imaging to investigate inhibitor-induced changes in properties of NS5A, including its interaction with phosphatidylinositol-4 kinase IIIα and induction of the membranous web, which is the site of HCV replication. Analyses were conducted with replicons, infectious virus, and human hepatoma cells that express a HCV polyprotein. Studies included a set of daclatasvir derivatives and HCV variants with the NS5A inhibitor class-defining resistance mutation Y93H. RESULTS: NS5A inhibitors did not affect NS5A stability or dimerization. A daclatasvir derivative interacted with NS5A and molecular docking studies revealed a plausible mode by which the inhibitor bound to NS5A dimers. This interaction was impaired in mutant forms of NS5A that are resistant to daclatavir, providing a possible explanation for the reduced sensitivity of the HCV variants to this drug. Potent NS5A inhibitors were found to block HCV replication by preventing formation of the membranous web, which was not linked to an inhibition of phosphatidylinositol-4 kinase IIIα. Correlative light-electron microscopy revealed unequivocally that NS5A inhibitors had no overall effect on the subcellular distribution of NS5A, but completely prevented biogenesis of the membranous web. CONCLUSIONS: Highly potent inhibitors of NS5A, such as daclatasvir, block replication of HCV RNA at the stage of membranous web biogenesis-a new paradigm in antiviral therapy.


Assuntos
Antivirais/farmacologia , Membrana Celular/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Imidazóis/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Antivirais/química , Sítios de Ligação , Carbamatos , Linhagem Celular Tumoral , Membrana Celular/enzimologia , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Desenho de Fármacos , Farmacorresistência Viral , Hepacivirus/enzimologia , Hepacivirus/genética , Hepatócitos/enzimologia , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Imidazóis/química , Antígenos de Histocompatibilidade Menor , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteases/química , Conformação Proteica , Multimerização Proteica , Pirrolidinas , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção , Valina/análogos & derivados , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
11.
J Virol ; 88(13): 7426-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24741107

RESUMO

UNLABELLED: GB virus B (GBV-B), which is hepatotropic in experimentally infected small New World primates, is a member of the Hepacivirus genus but phylogenetically relatively distant from hepatitis C virus (HCV). To gain insights into the role and specificity of hepaciviral nonstructural protein 2 (NS2), which is required for HCV polyprotein processing and particle morphogenesis, we investigated whether NS2 structural and functional features are conserved between HCV and GBV-B. We found that GBV-B NS2, like HCV NS2, has cysteine protease activity responsible for cleavage at the NS2/NS3 junction, and we experimentally confirmed the location of this junction within the viral polyprotein. A model for GBV-B NS2 membrane topology was experimentally established by determining the membrane association properties of NS2 segments fused to green fluorescent protein (GFP) and their nuclear magnetic resonance structures using synthetic peptides as well as by applying an N-glycosylation scanning approach. Similar glycosylation studies confirmed the HCV NS2 organization. Together, our data show that despite limited amino acid sequence similarity, GBV-B and HCV NS2 proteins share a membrane topology with 3 N-terminal transmembrane segments, which is also predicted to apply to other recently discovered hepaciviruses. Based on these data and using trans-complementation systems, we found that intragenotypic hybrid NS2 proteins with heterologous N-terminal membrane segments were able to efficiently trans-complement an assembly-deficient HCV mutant with a point mutation in the NS2 C-terminal domain, while GBV-B/HCV or intergenotypic NS2 chimeras were not. These studies indicate that virus- and genotype-specific intramolecular interactions between N- and C-terminal domains of NS2 are critically involved in HCV morphogenesis. IMPORTANCE: Nonstructural protein 2 (NS2) of hepatitis C virus (HCV) is a multifunctional protein critically involved in polyprotein processing and virion morphogenesis. To gain insights into NS2 mechanisms of action, we investigated whether NS2 structural and functional features are conserved between HCV and GB virus B (GBV-B), a phylogenetically relatively distant primate hepacivirus. We showed that GBV-B NS2, like HCV NS2, carries cysteine protease activity. We experimentally established a model for GBV-B NS2 membrane topology and demonstrated that despite limited sequence similarity, GBV-B and HCV NS2 share an organization with three N-terminal transmembrane segments. We found that the role of HCV NS2 in particle assembly is genotype specific and relies on critical interactions between its N- and C-terminal domains. This first comparative analysis of NS2 proteins from two hepaciviruses and our structural predictions of NS2 from other newly identified mammal hepaciviruses highlight conserved key features of the hepaciviral life cycle.


Assuntos
Membrana Celular/metabolismo , Infecções por Flaviviridae/metabolismo , Hepatite C/metabolismo , Hepatite Viral Humana/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Infecções por Flaviviridae/virologia , Imunofluorescência , Vírus GB B/fisiologia , Hepacivirus/fisiologia , Hepatite C/virologia , Hepatite Viral Humana/virologia , Humanos , Immunoblotting , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/química , Replicação Viral
12.
J Virol ; 88(11): 6519-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24648458

RESUMO

Hepatitis C virus (HCV) nonstructural protein 2 (NS2) is required for HCV polyprotein processing and particle assembly. It comprises an N-terminal membrane domain and a C-terminal, cytosolically oriented protease domain. Here, we demonstrate that the NS2 protease domain itself associates with cellular membranes. A single charged residue in the second α-helix of the NS2 protease domain is required for proper membrane association, NS2 protein stability, and efficient HCV polyprotein processing.


Assuntos
Membrana Celular/metabolismo , Hepacivirus/enzimologia , Modelos Moleculares , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Fluorescência Verde , Microscopia Confocal , Dados de Sequência Molecular , Estrutura Terciária de Proteína/genética , Análise de Sequência de DNA , Proteínas não Estruturais Virais/química , Montagem de Vírus/genética
13.
Hepatology ; 59(2): 423-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23929719

RESUMO

UNLABELLED: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity, mitochondrial antiviral signaling protein (MAVS) and TRIF, a phosphatase involved in growth factor signaling, T-cell protein tyrosine phosphatase (TC-PTP), and the E3 ubiquitin ligase component UV-damaged DNA-binding protein 1 (DDB1). Here we explored quantitative proteomics to identify novel cellular substrates of the NS3-4A protease. Cell lines inducibly expressing the NS3-4A protease were analyzed by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. This approach identified the membrane-associated peroxidase GPx8 as a bona fide cellular substrate of the HCV NS3-4A protease. Cleavage by NS3-4A occurs at Cys 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic HCV. Overexpression and RNA silencing studies revealed that GPx8 is involved in viral particle production but not in HCV entry or RNA replication. CONCLUSION: We provide proof-of-concept for the use of quantitative proteomics to identify cellular substrates of a viral protease and describe GPx8 as a novel proviral host factor targeted by the HCV NS3-4A protease.


Assuntos
Hepatite C Crônica/metabolismo , Peptídeo Hidrolases/metabolismo , Peroxidases/metabolismo , Proteômica/métodos , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Biópsia , Linhagem Celular , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/farmacologia , Peroxidases/química , Peroxidases/efeitos dos fármacos , Especificidade por Substrato , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia , Proteínas não Estruturais Virais/química , Vírion/efeitos dos fármacos
14.
J Infect Dis ; 208(11): 1888-97, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23908491

RESUMO

BACKGROUND: The envelope glycoprotein E2 of hepatitis C virus (HCV) contains several hypervariable regions. Interestingly, 2 regions of intragenotypic hypervariability within E2 have been described as being specific to HCV subtype 3a. Based on their amino acid position in E2, they were named HVR495 and HVR575. Here, we further investigated these regions in order to better understand their role in HCV infection. METHODS: Sequences of HCV envelope glycoproteins from Pakistani patients infected with subtype 3a were cloned and compared with other subtype 3a sequences. The entry functions and the sensitivity to antibody neutralization of selected HCV glycoprotein sequences were tested in the HCV pseudotyped particles (HCVpp) system. In addition, the cell-cultured HCV system (HCVcc) was also used to confirm some of the data obtained with the HCVpp system. RESULTS: We observed interesting new features within HVR495 and HVR575 for several subtype 3a isolates. Indeed, changes in glycosylation sites were observed with the appearance of a new glycosylation site within HVR495. Importantly, HCVpp and HCVcc that contained this new HVR495 glycosylation site were less sensitive to antibody neutralization. CONCLUSIONS: We identified a new glycosylation site within the HVR495 region of HCV subtype 3a that has a protective effect against antibody neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/virologia , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Linhagem Celular , Glicosilação , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/imunologia , Humanos , Mutação , Paquistão , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Tetraspanina 28/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
15.
J Virol ; 87(3): 1605-17, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175356

RESUMO

Class II membrane fusion proteins have been described in viruses in which the envelope proteins are derived from a precursor polyprotein containing two transmembrane glycoproteins arranged in tandem. Although the second protein, which carries the membrane fusion function, is in general well characterized, the companion protein, which is a protein chaperone for the folding of the fusion protein, is less well characterized for some viruses, like hepatitis C virus (HCV). To investigate the role of the class II companion glycoprotein E1 of HCV, we chose to target conserved cysteine residues in the protein, and we systematically mutated them in a full-length infectious HCV clone by reverse genetics. All the mutants were infectious, albeit with lower titers than the wild-type virus. The reduced infectivity was in part due to a decrease in viral assembly, as revealed by measurement of intracellular infectivity and by quantification of core protein released from cells transfected with mutant genomes. Analyses of mutated proteins did not show any major defect in folding. However, the mutations reduced virus stability, and they could also affect the density of infectious viral particles. Mutant viruses also showed a defect in cell-to-cell transmission. Finally, our data indicate that HCV glycoprotein E1 can also affect the fusion protein E2 by modulating its recognition by the cellular coreceptor CD81. Therefore, in the context of HCV, our data identify an additional function of a class II companion protein as a molecule that can control the binding capacity of the fusion protein.


Assuntos
Dissulfetos/metabolismo , Hepacivirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Internalização do Vírus , Substituição de Aminoácidos , Linhagem Celular , Cisteína/genética , Cisteína/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Genética Reversa , Proteínas do Envelope Viral/genética
16.
J Biol Chem ; 287(37): 31242-57, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22767607

RESUMO

Hepatitis C virus (HCV) particles assemble along the very low density lipoprotein pathway and are released from hepatocytes as entities varying in their degree of lipid and apolipoprotein (apo) association as well as buoyant densities. Little is known about the cell entry pathway of these different HCV particle subpopulations, which likely occurs by regulated spatiotemporal processes involving several cell surface molecules. One of these molecules is the scavenger receptor BI (SR-BI), a receptor for high density lipoprotein that can bind to the HCV glycoprotein E2. By studying the entry properties of infectious virus subpopulations differing in their buoyant densities, we show that these HCV particles utilize SR-BI in a manifold manner. First, SR-BI mediates primary attachment of HCV particles of intermediate density to cells. These initial interactions involve apolipoproteins, such as apolipoprotein E, present on the surface of HCV particles, but not the E2 glycoprotein, suggesting that lipoprotein components in the virion act as host-derived ligands for important entry factors such as SR-BI. Second, we found that in contrast to this initial attachment, SR-BI mediates entry of HCV particles independent of their buoyant density. This function of SR-BI does not depend on E2/SR-BI interaction but relies on the lipid transfer activity of SR-BI, probably by facilitating entry steps along with other HCV entry co-factors. Finally, our results underscore a third function of SR-BI governed by specific residues in hypervariable region 1 of E2 leading to enhanced cell entry and depending on SR-BI ability to bind to E2.


Assuntos
Apolipoproteínas E/metabolismo , Hepacivirus/fisiologia , Receptores Depuradores Classe B/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Apolipoproteínas E/genética , Linhagem Celular Tumoral , Humanos , Camundongos , Estrutura Terciária de Proteína , Ratos , Receptores Depuradores Classe B/genética , Proteínas do Envelope Viral/genética
17.
J Virol ; 86(15): 7818-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593157

RESUMO

The maturation of the hepatitis C virus (HCV) core protein requires proteolytic processing by two host proteases: signal peptidase (SP) and the intramembrane-cleaving protease signal peptide peptidase (SPP). Previous work on HCV genotype 1a (GT1a) and GT2a has identified crucial residues required for efficient signal peptide processing by SPP, which in turn has an effect on the production of infectious virus particles. Here we demonstrate that the JFH1 GT2a core-E1 signal peptide can be adapted to the GT3a sequence without affecting the production of infectious HCV. Through mutagenesis studies, we identified crucial residues required for core-E1 signal peptide processing, including a GT3a sequence-specific histidine (His) at position 187. In addition, the stable knockdown of intracellular SPP levels in HuH-7 cells significantly affects HCV virus titers, further demonstrating the requirement for SPP for the maturation of core and the production of infectious HCV particles. Finally, our nuclear magnetic resonance (NMR) structural analysis of a synthetic HCV JFH1 GT2a core-E1 signal peptide provides an essential structural template for a further understanding of core processing as well as the first model for an SPP substrate within its membrane environment. Our findings give deeper insights into the mechanisms of intramembrane-cleaving proteases and the impact on viral infections.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Hepacivirus/metabolismo , Hepatite C/metabolismo , Sinais Direcionadores de Proteínas , Proteínas do Core Viral/metabolismo , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Células HEK293 , Hepacivirus/química , Hepacivirus/genética , Hepatite C/genética , Humanos , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Proteínas do Core Viral/química , Proteínas do Core Viral/genética
18.
Antimicrob Agents Chemother ; 56(6): 3336-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22430971

RESUMO

We have identified a short amphipathic helical peptide, called C5A, which exhibits potent microbicidal activities in vitro and which offers protection from vaginal HIV transmission in vivo in a humanized mouse model. However, there are many obstacles to overcome before C5A can be considered a true microbicidal candidate. First, it must be stabilized against enzymatic degradation in a continuously warm and moist environment. Second, it must be delivered in a controlled manner to achieve long-term and coitally independent efficacy. We demonstrate in this in vitro study that the combination of two matrices with different subliming properties ((hexamethylcyclotrisiloxane [HMCS] and cyclododecane [CDD]) containing 10% labile C5A yielded the best results in terms of controlled release and preserved anti-HIV activity of the peptide when pre-exposed to cell-free medium or cell culture at body temperature for up to 2 months.


Assuntos
Antivirais/farmacologia , HIV/efeitos dos fármacos , Peptídeos/farmacologia , Antivirais/química , Linhagem Celular , Células Cultivadas , Humanos , Peptídeos/química , Estrutura Secundária de Proteína
19.
J Virol ; 86(2): 679-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072760

RESUMO

Hepatitis C virus core protein forms the viral nucleocapsid and plays a critical role in the formation of infectious particles. In this study, we demonstrate that the highly conserved residue G33, located within domain 1 of the core protein, is important for the production of cell culture-infectious virus (HCVcc). Alanine substitution at this position in the JFH1 genome did not alter viral RNA replication but reduced infectivity by ∼2 logs. Virus production by this core mutant could be rescued by compensatory mutations located immediately upstream and downstream of the original G33A mutation. The examination of the helix-loop-helix motif observed in the core protein structure (residues 15 to 41; Protein Data Bank entry 1CWX) indicated that the residues G33 and F24 are in close contact with each other, and that the G33A mutation induces a steric clash with F24. Molecular simulations revealed that the compensatory mutations increase the helix-loop-helix flexibility, allowing rescue of the core active conformation required for efficient virus production. Taken together, these data highlight the plasticity of core domain 1 conformation and illustrate the relationship between its structural tolerance to mutations and virus infectivity.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Replicação Viral , Sequência de Aminoácidos , Linhagem Celular , Sequência Conservada , Glicina/química , Glicina/genética , Glicina/metabolismo , Hepacivirus/química , Hepacivirus/genética , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteínas do Core Viral/genética
20.
Nucleic Acids Res ; 40(6): 2540-53, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22127859

RESUMO

The core protein of hepatitis c virus (HCV) is a structural protein with potent RNA chaperoning activities mediated by its hydrophilic N-terminal domain D1, which is thought to play a key role in HCV replication. To further characterize the core chaperoning properties, we studied the interactions between core D1 and the conserved HCV 3'X genomic region required for genome replication. To this end, we monitored the real-time annealing kinetics of native and mutated fluorescently labelled 16-nt palindromic sequence (DLS) and 27-nt Stem Loop II (SL2) from X with their respective complementary sequences. Core D1 and peptides consisting of the core basic domains were found to promote both annealing reactions and partly switch the loop-loop interaction pathway, which predominates in the absence of peptide, towards a pathway involving the stem termini. The chaperone properties of the core D1 peptides were found to be mediated through interaction of their basic clusters with the oligonucleotide phosphate groups, in line with the absence of high affinity site for core on HCV genomic RNA. The core ability to facilitate the interconversion between different RNA structures may explain how this protein regulates RNA structural transitions during HCV replication.


Assuntos
Regiões 3' não Traduzidas , Genoma Viral , Hepacivirus/genética , RNA Viral/química , Proteínas do Core Viral/metabolismo , Sequência de Bases , Sequência Conservada , Cinética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Estrutura Terciária de Proteína , Proteínas do Core Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA