Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(4): e0144221, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399620

RESUMO

Anaerobic gut fungi (Neocallimastigomycetes) live in the digestive tract of large herbivores, where they are vastly outnumbered by bacteria. It has been suggested that anaerobic fungi challenge growth of bacteria owing to the wealth of biosynthetic genes in fungal genomes, although this relationship has not been experimentally tested. Here, we cocultivated the rumen bacteria Fibrobacter succinogenes strain UWB7 with the anaerobic gut fungi Anaeromyces robustus or Caecomyces churrovis on a range of carbon substrates and quantified the bacterial and fungal transcriptomic response. Synthetic cocultures were established for at least 24 h, as verified by active fungal and bacterial transcription. A. robustus upregulated components of its secondary metabolism in the presence of Fibrobacter succinogenes strain UWB7, including six nonribosomal peptide synthetases, one polyketide synthase-like enzyme, and five polyketide synthesis O-type methyltransferases. Both A. robustus and C. churrovis cocultures upregulated S-adenosyl-l-methionine (SAM)-dependent methyltransferases, histone methyltransferases, and an acetyltransferase. Fungal histone 3 lysine 27 trimethylation marks were more abundant in coculture, and heterochromatin protein-1 was downregulated. Together, these findings suggest that fungal chromatin remodeling occurs when bacteria are present. F. succinogenes strain UWB7 upregulated four genes in coculture encoding drug efflux pumps, which likely protect the cell against toxins. Furthermore, untargeted nonpolar metabolomics data revealed at least one novel fungal metabolite enriched in coculture, which may be a defense compound. Taken together, these data suggest that A. robustus and C. churrovis produce antimicrobials when exposed to rumen bacteria and, more broadly, that anaerobic gut fungi are a source of novel antibiotics. IMPORTANCE Anaerobic fungi are outnumbered by bacteria by 4 orders of magnitude in the herbivore rumen. Despite their numerical disadvantage, they are resilient members of the rumen microbiome. Previous studies mining the genomes of anaerobic fungi identified genes encoding enzymes to produce natural products, which are small molecules that are often antimicrobials. In this work, we cocultured the anaerobic fungus Anaeromyces robustus or Caecomyes churrovis with rumen bacteria Fibrobacter succinogenes strain UWB7 and sequenced fungal and bacterial active genes via transcriptome sequencing (RNA-seq). Consistent with production of a fungal defense compound, bacteria upregulated genes encoding drug efflux pumps, which often export toxic molecules, and fungi upregulated genes encoding biosynthetic enzymes of natural products. Furthermore, tandem mass spectrometry detected an unknown fungal metabolite enriched in the coculture. Together, these findings point to an antagonistic relationship between anaerobic fungi and rumen bacteria resulting in the production of a fungal compound with potential antimicrobial activity.


Assuntos
Antibiose , Bactérias/genética , Fungos/genética , Fungos/fisiologia , Rúmen/microbiologia , Ovinos/microbiologia , Anaerobiose , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fungos/classificação , Fungos/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genoma Bacteriano , Genoma Fúngico , Técnicas Microbiológicas
2.
Life (Basel) ; 10(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352712

RESUMO

The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the "Shed light in The daRk lineagES of the fungal tree of life" (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments.

3.
Sci Data ; 6(1): 140, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366912

RESUMO

The rocky, seasonally-dry and nutrient-impoverished soils of the Brazilian campos rupestres impose severe growth-limiting conditions on plants. Species of a dominant plant family, Velloziaceae, are highly specialized to low-nutrient conditions and seasonal water availability of this environment, where phosphorus (P) is the key limiting nutrient. Despite plant-microbe associations playing critical roles in stressful ecosystems, the contribution of these interactions in the campos rupestres remains poorly studied. Here we present the first microbiome data of Velloziaceae spp. thriving in contrasting substrates of campos rupestres. We assessed the microbiomes of Vellozia epidendroides, which occupies shallow patches of soil, and Barbacenia macrantha, growing on exposed rocks. The prokaryotic and fungal profiles were assessed by rRNA barcode sequencing of epiphytic and endophytic compartments of roots, stems, leaves and surrounding soil/rocks. We also generated root and substrate (rock/soil)-associated metagenomes of each plant species. We foresee that these data will contribute to decipher how the microbiome contributes to plant functioning in the campos rupestres, and to unravel new strategies for improved crop productivity in stressful environments.


Assuntos
Magnoliopsida/microbiologia , Microbiota , Fósforo/química , Microbiologia do Solo , Solo/química , Bactérias/classificação , Biodiversidade , Brasil , Fungos/classificação , Metagenoma , Metiltransferases/genética , Análise de Sequência de DNA
4.
J Bacteriol ; 201(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30692176

RESUMO

In previous work (D. R. Harris et al., J Bacteriol 191:5240-5252, 2009, https://doi.org/10.1128/JB.00502-09; B. T. Byrne et al., Elife 3:e01322, 2014, https://doi.org/10.7554/eLife.01322), we demonstrated that Escherichia coli could acquire substantial levels of resistance to ionizing radiation (IR) via directed evolution. Major phenotypic contributions involved adaptation of organic systems for DNA repair. We have now undertaken an extended effort to generate E. coli populations that are as resistant to IR as Deinococcus radiodurans After an initial 50 cycles of selection using high-energy electron beam IR, four replicate populations exhibit major increases in IR resistance but have not yet reached IR resistance equivalent to D. radiodurans Regular deep sequencing reveals complex evolutionary patterns with abundant clonal interference. Prominent IR resistance mechanisms involve novel adaptations to DNA repair systems and alterations in RNA polymerase. Adaptation is highly specialized to resist IR exposure, since isolates from the evolved populations exhibit highly variable patterns of resistance to other forms of DNA damage. Sequenced isolates from the populations possess between 184 and 280 mutations. IR resistance in one isolate, IR9-50-1, is derived largely from four novel mutations affecting DNA and RNA metabolism: RecD A90E, RecN K429Q, and RpoB S72N/RpoC K1172I. Additional mechanisms of IR resistance are evident.IMPORTANCE Some bacterial species exhibit astonishing resistance to ionizing radiation, with Deinococcus radiodurans being the archetype. As natural IR sources rarely exceed mGy levels, the capacity of Deinococcus to survive 5,000 Gy has been attributed to desiccation resistance. To understand the molecular basis of true extreme IR resistance, we are using experimental evolution to generate strains of Escherichia coli with IR resistance levels comparable to Deinococcus Experimental evolution has previously generated moderate radioresistance for multiple bacterial species. However, these efforts could not take advantage of modern genomic sequencing technologies. In this report, we examine four replicate bacterial populations after 50 selection cycles. Genomic sequencing allows us to follow the genesis of mutations in populations throughout selection. Novel mutations affecting genes encoding DNA repair proteins and RNA polymerase enhance radioresistance. However, more contributors are apparent.


Assuntos
Evolução Biológica , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Tolerância a Radiação , Radiação Ionizante , Seleção Genética , Análise Mutacional de DNA , Enzimas Reparadoras do DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Deinococcus/crescimento & desenvolvimento , Deinococcus/efeitos da radiação , Escherichia coli/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Mutação
5.
Elife ; 3: e01322, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24596148

RESUMO

By directed evolution in the laboratory, we previously generated populations of Escherichia coli that exhibit a complex new phenotype, extreme resistance to ionizing radiation (IR). The molecular basis of this extremophile phenotype, involving strain isolates with a 3-4 order of magnitude increase in IR resistance at 3000 Gy, is now addressed. Of 69 mutations identified in one of our most highly adapted isolates, functional experiments demonstrate that the IR resistance phenotype is almost entirely accounted for by only three of these nucleotide changes, in the DNA metabolism genes recA, dnaB, and yfjK. Four additional genetic changes make small but measurable contributions. Whereas multiple contributions to IR resistance are evident in this study, our results highlight a particular adaptation mechanism not adequately considered in studies to date: Genetic innovations involving pre-existing DNA repair functions can play a predominant role in the acquisition of an IR resistance phenotype. DOI: http://dx.doi.org/10.7554/eLife.01322.001.


Assuntos
Adaptação Biológica , Enzimas Reparadoras do DNA/genética , Reparo do DNA , Escherichia coli/fisiologia , Escherichia coli/efeitos da radiação , Evolução Molecular , Radiação Ionizante , Análise Mutacional de DNA , Enzimas Reparadoras do DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação
6.
Genome Res ; 21(4): 634-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21367939

RESUMO

Small proteins (10-200 amino acids [aa] in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained ~2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10-200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) coding-potential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.


Assuntos
Biologia Computacional , Genômica , Anotação de Sequência Molecular/métodos , Proteômica , Etiquetas de Sequências Expressas , Dados de Sequência Molecular , Fases de Leitura Aberta , Folhas de Planta/genética , Proteínas de Plantas/genética , Populus/genética , RNA não Traduzido/genética , Projetos de Pesquisa
7.
Genome Res ; 16(6): 796-803, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16672307

RESUMO

Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X. tropicalis) as a community resource. Because the genome of X. laevis, but not X. tropicalis, has undergone allotetraploidization, comparison of coding sequences from these two clawed (pipid) frogs provides a unique angle for exploring the molecular evolution of duplicate genes. Within our clone set, we have identified 445 gene trios, each comprised of an allotetraploidization-derived X. laevis gene pair and their shared X. tropicalis ortholog. Pairwise dN/dS, comparisons within trios show strong evidence for purifying selection acting on all three members. However, dN/dS ratios between X. laevis gene pairs are elevated relative to their X. tropicalis ortholog. This difference is highly significant and indicates an overall relaxation of selective pressures on duplicated gene pairs. We have found that the paralogs that have been lost since the tetraploidization event are enriched for several molecular functions, but have found no such enrichment in the extant paralogs. Approximately 14% of the paralogous pairs analyzed here also show differential expression indicative of subfunctionalization.


Assuntos
Sequência de Bases , Biblioteca Gênica , Poliploidia , Xenopus laevis/genética , Xenopus/genética , Animais , Evolução Molecular , Expressão Gênica , Genes Duplicados , Genoma , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA