Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Exp Neurol ; 5(1): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332938

RESUMO

Thirty percent of ischemic stroke patients develop vascular cognitive impairment and dementia (VCID) within 1 year of stroke onset. The expression of C-C motif chemokine receptor 3 (CCR3) is associated with endothelial dysfunction and memory impairment. CCR3 has been reported to increase after experimental stroke and in human stroke patients. Using an in vivo model of stroke, our study aims to link CCR3 expression with endothelial dysfunction in this rodent stroke model. Methods: 5-hour transient Middle Cerebral Artery Occlusion (5t-MCAO) or sham surgery was performed on rats and tissue collected at 3- and 30-days post-stroke. We measured the change in expression of CCR3 and its ligands in the venous blood before and after occlusion in the rat model.Immunohistochemistry was performed on consecutive coronal brain sections using Prussian blue to visualize microbleeds and DAB to visualize CCR3. Images were quantified using HALO. Results: Using linear regression, we found that increased expression of CCR3 and its ligands after stroke were positively correlated with infarct volume. CCR3 expression was significantly increased in the ipsilateral hemisphere at 30 days post 5t-MCAO. Prussian blue staining was significantly increased in ipsilateral sections at 30 days post-stroke. Immunostaining for CCR3 was primarily detected in endothelium in areas of Prussian blue staining. Conclusions: Our results demonstrate that CCR3 expression is associated with the presence of microbleeds at 30 days but not 3 days post-stroke in the ipsilateral hemisphere, and further supports the link between CCR3 and the endothelial dysfunction that is associated with VCID. CCR3 and its inflammatory pathway is a potential target for reducing endothelial dysfunction after ischemic stroke that may lead to VCID.

2.
J Neurointerv Surg ; 16(4): 425-428, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37258227

RESUMO

The last 10 years have seen a major shift in management of large vessel ischemic stroke with changes towards ever-expanding use of reperfusion therapies (intravenous thrombolysis and mechanical thrombectomy). These strategies 'open the door' to acute therapeutics for ischemic tissue, and we should investigate novel therapeutic approaches to enhance survival of recently reperfused brain. Key insights into new approaches have been provided through translational research models and preclinical paradigms, and through detailed research on ischemic mechanisms. Additional recent clinical trials offer exciting salvos into this new strategy of pairing reperfusion with neuroprotective therapy. This pairing strategy can be employed using drugs that have shown neuroprotective efficacy; neurointerventionalists can administer these during or immediately after reperfusion therapy. This represents a crucial moment when we emphasize reperfusion, and have the technological capability along with the clinical trial experience to lead the way in multiprong approaches to stroke treatment.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica , Trombectomia , Resultado do Tratamento , Fibrinolíticos/uso terapêutico
3.
Neurochem Int ; 160: 105421, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179808

RESUMO

BACKGROUND: Stroke is a major cause of death and disability in the United States. Mechanical thrombectomy (MT) and tissue plasminogen activator are the current treatments for ischemic stroke, which have improved clinical outcomes. Despite these treatments, functional and cognitive deficits still occur demonstrating a need for predictive biomarkers for beneficial clinical outcomes which can be used as therapeutic targets for pharmacotherapy. The aim of this study compares the proteomic expression of systemic arterial blood collected at the time of MT to those from a matched cerebrovascular disease (CVD) control cohort. METHODS: The Blood And Clot Thrombectomy Registry And Collaboration (BACTRAC) (clinicaltrials.gov NCT03153683) collects and banks arterial blood, both distal and proximal to the thrombus, from ischemic stroke subjects undergoing MT. Arterial blood from patients undergoing a diagnostic angiogram was also collected and banked as CVD controls. Changes in cardiometabolic and inflammatory proteins between stroke and CVD controls were analyzed via Olink Proteomics. RESULTS: Proteins including ARTN, TWEAK, HGF, CCL28, FGF-5, CXCL9, TRANCE and GDNF were found to be decreased in stroke subjects when compared to CVD controls. CXCL1, CCL5, OSM, GP1BA, IL6, MMP-1, and CXCL5 were increased in stroke subjects when compared to CVD controls. These proteins were also significantly correlated to stroke outcome metrics such as NIHSS, infarct volume and MoCA scoring. CONCLUSION: Overall, acute stroke patients had an increase in inflammatory proteins with a decrease in trophic proteins systemically compared to matched CVD controls. Using our CVD controls, proteins of interest were directly compared to stroke patients with the same cerebrovascular risk factors instead of statistically controlling for comorbidities. The novel methodology of matching an arterial blood CVD control group to a stroke group, as well as controlling for age and comorbid status add to the literature on prognostic stroke biomarkers, which are specific targets for future therapeutics.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/tratamento farmacológico , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Interleucina-6 , Metaloproteinase 1 da Matriz , Proteômica , Acidente Vascular Cerebral/terapia , Ativador de Plasminogênio Tecidual , Resultado do Tratamento , Estados Unidos
4.
Brain Behav Immun Health ; 20: 100422, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35141572

RESUMO

BACKGROUND: Emergent Large Vessel Occlusion (ELVO) strokes are ischemic vascular events for which novel biomarkers and therapies are needed. The purpose of this study is to investigate the role of Body Mass Index (BMI) on protein expression and signaling at the time of ELVO intervention. Additionally, we highlight the protein adenosine deaminase (ADA), which is a deaminating enzyme that degrades adenosine, which has been shown to be neuroprotective in ischemia. We investigate the relationship between ADA and BMI, stroke outcomes, and associated proteomic networks which might aid in personalizing prognosis and future treatment of ELVO stroke. METHODS: The Blood And Clot Thrombectomy And Collaboration (BACTRAC) study is a continually enrolling tissue bank (clinicaltrials.gov NCT03153683) and registry from stroke patients undergoing mechanical thrombectomy (MT). N â€‹= â€‹61 human carotid plasma samples were analyzed for inflammatory and cardiometabolic protein expression by Olink Proteomics. Statistical analyses used t-tests, linear, logistic, and robust regressions, to assess the relationship between BMI, proteomic expression, and stroke-related outcomes. RESULTS: The 61 subjects studied were broken into three categories: normal weight (BMI 18.5-24.9) which contained 19 subjects, overweight (BMI 25-30) which contained 25 subjects, and obese (BMI ≥30) which contained 17 subjects. Normal BMI group was a significantly older population (mean 76 years) when compared to overweight (mean 66 years) and obese (mean 61 years) with significance of p â€‹= â€‹0.041 and p â€‹= â€‹0.005, respectively. When compared to normal weight and overweight categories, the obese category had significantly higher levels of adenosine deaminase (ADA) expression (p â€‹= â€‹0.01 and p â€‹= â€‹0.039, respectively). Elevated levels of ADA were found to have a significant positive correlation with both infarct volume and edema volume (p â€‹= â€‹0.013 and p â€‹= â€‹0.041, respectively), and were associated with a more severe stroke (NIHSS on discharge) and greater stroke related disability (mRS on discharge) with significance of p â€‹= â€‹0.053 and p â€‹= â€‹0.032, respectively. CONCLUSIONS: When examined according to BMI, subjects undergoing MT for ELVO demonstrate significant differences in the expression of certain plasma proteins, including ADA. Levels of ADA were found to be significantly higher in the obese population when compared to normal or overweight groups. Increased levels of ADA in the obese group were predictive of increased infarct volume, edema volume, and worse NIHSS scores and mRS at discharge. These data provide novel biomarker candidates as well as treatment targets while increasing the personalization of stroke prognosis and treatment.

5.
World Neurosurg ; 153: e365-e372, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217861

RESUMO

OBJECTIVE: Ischemic stroke is the fifth leading cause of death in the United States. Smoking accelerates the onset of stroke by 10 years. The effects of smoking status on percent change in National Institutes of Health Stroke Scale (NIHSS) score, infarct volume, and edema volume were examined following mechanical thrombectomy for large vessel occlusion in patients with acute ischemic stroke. METHODS: Subjects (N = 90; >18 years old) were divided into 3 groups based on smoking status: current smokers, previous smokers (defined as having quit >6 months before the ischemic event), and nonsmokers. Percent change in NIHSS score was defined as score at admission minus score at discharge divided by score at admission and was used as a predictor of functional outcome. Linear regression analysis was performed based on infarct or edema volume versus percent change in NIHSS score and separated by sex. RESULTS: Consistent with previous findings, smokers experienced a stroke 10 years earlier than nonsmokers (P = 0.004). Statistically significant linear regressions existed between infarct volume or edema volume in relation to worsening change in NIHSS score with female smokers only. Stroke-induced tissue damage, as measured by magnetic resonance imaging or computed tomography, was predictive of functional recovery only in female smokers. CONCLUSIONS: These findings are valuable for patient counseling, particularly for women, for smoking cessation.


Assuntos
AVC Isquêmico/cirurgia , Recuperação de Função Fisiológica , Caracteres Sexuais , Fumar/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Trombectomia/métodos
6.
J Neurointerv Surg ; 13(4): 395-399, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32641418

RESUMO

BACKGROUND: Since 2015, mechanical thrombectomy has been the standard treatment for emergent large vessel occlusion ischemic stroke. OBJECTIVE: To investigate, using the previously published Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC) protocol (clinicaltrials.gov NCT03153683), how the protein expression of a patient's intracranial blood during ischemic stroke compares with the protein expression of their systemic arterial blood in order to better understand and treat stroke. METHODS: Plasma samples from 25 subjects underwent proteomic analysis, where intracranial protein expression was compared with systemic protein levels. Data including sex, comorbidities, infarct volume, and infarct time were included for each subject. RESULTS: A majority of important proteins had a lower expression in intracranial blood than in systemic arterial blood. Proteins with the most significant changes in expression were: endopeptidase at -0.26 (p<0.0001), phospholipid transfer protein (PLTP) at -0.26 (p=0.0005), uromodulin (UMOD) at -0.14 (p=0.002), ficolin-2 (FCN2) at -0.46 (p=0.005), C-C motif chemokine 19 (CCL19) at -0.51 (p<0.0001), C-C motif chemokine 20 (CCL20) at -0.40 (p<0.0001), fibroblast growth factor 21 at -0.37 (p=0.0002), and C-C motif chemokine (CCL23) at -0.43 (p=0.0003). CONCLUSIONS: Evaluation of proteomic changes in the intravascular space of a cerebral infarct in progress in human subjects suggested that changes in proteins such PLTP, fetuin-B (FETUB), and FCN2 may be involved in atherosclerotic changes, and chemokines such as CCL23 are known to play a role in the Th2 autoimmune response. These data provide a scientific springboard for identifying clinically relevant biomarkers for diagnosis/prognosis, and targets for much needed neuroprotective/neuroreparative pharmacotherapies.


Assuntos
Isquemia Encefálica/sangue , Isquemia Encefálica/cirurgia , AVC Isquêmico/sangue , AVC Isquêmico/cirurgia , Proteômica/tendências , Trombectomia/tendências , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Sistema de Registros , Trombectomia/métodos , Resultado do Tratamento
7.
Oxid Med Cell Longev ; 2020: 8880244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376583

RESUMO

BACKGROUND: The goal of this study was to determine whether leukemia inhibitory factor (LIF) promotes anti-inflammatory activity after stroke in a sex-dependent manner. METHODS: Aged (18-month-old) Sprague-Dawley rats of both sexes underwent sham surgery or permanent middle cerebral artery occlusion (MCAO). Animals received three doses of intravenous LIF (125 µg/kg) or PBS at 6, 24, and 48 h before euthanization at 72 h. Spleen weights were measured immediately following euthanization. Western blot was used to measure protein levels of CCL8, CD11b, CXCL9, CXCL10, IL-12 p40, IL-3, and the LIF receptor (LIFR) in spleen tissue. ELISA was used to measure IL-1ß, IL-6, TNFα, and IFNγ in spleen tissue. A Griess Assay was used to indirectly quantify NO levels via measurement of nitrite. Levels of cellular markers and inflammatory mediators were normalized to the baseline (sham) group from each sex. Statistical analysis was performed using two-way ANOVA and followed by Fisher's LSD post hoc test. RESULTS: Aged female rats showed a significantly lower spleen weight after MCAO, but showed a significant increase in spleen size after LIF treatment. This effect was observed in aged male rats, but not to as great of an extent. CD11b levels were significantly higher in the spleens of MCAO+PBS males compared to their female counterparts, but there was no significant difference in CD11b levels between MCAO+LIF males and females. LIF significantly increased CXCL9 after LIF treatment in aged male and female rats. LIFR and IL-3 were upregulated after LIF treatment in aged females. Splenic nitrate increased after MCAO but decreased after LIF treatment in aged females. Splenic nitrate levels did not increase after MCAO but did increase after LIF treatment in aged males. The following cytokines/chemokines were not altered by sex or treatment: TNFα, IL-6, IL-12 p40, CCL8, IFNγ, and CXCL10. CONCLUSIONS: LIF treatment after permanent MCAO induces sex-dependent effects on the poststroke splenic response and the production of proinflammatory cytokines among aged rats.


Assuntos
Envelhecimento/imunologia , Fator Inibidor de Leucemia/imunologia , Caracteres Sexuais , Baço/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Quimiocinas/imunologia , Feminino , Interleucinas/imunologia , Masculino , Óxido Nítrico/imunologia , Ratos , Ratos Sprague-Dawley
8.
J Immunol ; 203(4): 1021-1030, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31263039

RESUMO

Azithromycin is effective at controlling exaggerated inflammation and slowing the long-term decline of lung function in patients with cystic fibrosis. We previously demonstrated that the drug shifts macrophage polarization toward an alternative, anti-inflammatory phenotype. In this study we investigated the immunomodulatory mechanism of azithromycin through its alteration of signaling via the NF-κB and STAT1 pathways. J774 murine macrophages were plated, polarized (with IFN-γ, IL-4/-13, or with azithromycin plus IFN-γ) and stimulated with LPS. The effect of azithromycin on NF-κB and STAT1 signaling mediators was assessed by Western blot, homogeneous time-resolved fluorescence assay, nuclear translocation assay, and immunofluorescence. The drug's effect on gene and protein expression of arginase was evaluated as a marker of alternative macrophage activation. Azithromycin blocked NF-κB activation by decreasing p65 nuclear translocation, although blunting the degradation of IκBα was due, at least in part, to a decrease in IKKß kinase activity. A direct correlation was observed between increasing azithromycin concentrations and increased IKKß protein expression. Moreover, incubation with the IKKß inhibitor IKK16 decreased arginase expression and activity in azithromycin-treated cells but not in cells treated with IL-4 and IL-13. Importantly, azithromycin treatment also decreased STAT1 phosphorylation in a concentration-dependent manner, an effect that was reversed with IKK16 treatment. We conclude that azithromycin anti-inflammatory mechanisms involve inhibition of the STAT1 and NF-κB signaling pathways through the drug's effect on p65 nuclear translocation and IKKß.


Assuntos
Azitromicina/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
9.
Metab Brain Dis ; 34(2): 631-640, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30612292

RESUMO

The aim of this study was to determine whether leukemia inhibitory factor (LIF) exerts its neuroprotective effects through signal transduction of the transcription factor myeloid zinc finger-1 (MZF-1). According to the hypothesis of this study, MZF-1 mediates LIF-induced neuroprotective signaling during ELVO through increased expression and transcriptional activity. To determine the in vivo role of MZF-1 in LIF-induced neuroprotection, we used Genomatix software was used to MZF-1 sites in the promoter region of the rat superoxide dismutase 3 (SOD3) gene. Stroke was induced via middle cerebral artery occlusion, and animals were administered PBS or 125 µg/kg LIF at 6, 24, and 48 h after the injury. MZF-1 binding activity was measured using electrophoretic mobility shift assay (EMSA) and its expression/localization were determined using western blot and immunohistochemical analysis. To determine whether MZF-1 relays LIF-induced neuroprotection in vitro, primary cultured neurons were subjected to oxygen-glucose deprivation (OGD) after treatment with PBS or LIF. MZF-1 expression was measured in vitro using real time PCR and immunohistochemical staining. Transfection with siRNA was used to determine whether LIF protected cultured neurons against OGD after silencing MZF-1 expression. Four MZF-1 binding sites were identified by Genomatix, and EMSA confirmed in vivo binding activity in brain after MCAO. LIF significantly increased MZF-1 protein levels compared to PBS treatment at 72 h post-MCAO. In vivo nuclear localization of MZF-1 as well as co-localization of SOD3 and MZF-1 was observed in the cortical neurons of LIF-treated rats. Primary cultured neurons treated with LIF had significantly higher levels of MZF-1 mRNA and protein after LIF treatment compared to neurons treated with PBS. Finally, knockdown MZF-1 using siRNA counteracted the neuroprotective effects of LIF in vitro. These data demonstrate that LIF-mediated neuroprotection is dependent upon MZF-1 activity. Furthermore, these findings identify a novel neuroprotective pathway that employs MZF-1, a transcription factor associated with hematopoietic gene expression.


Assuntos
Fator Inibidor de Leucemia/metabolismo , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Dedos de Zinco/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/fisiologia , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo
10.
Brain Res ; 1707: 62-73, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445025

RESUMO

Preclinical studies using rodent models of stroke have had difficulty in translating their results to human patients. One possible factor behind this inability is the lack of studies utilizing aged rodents of both sexes. Previously, this lab showed that leukemia inhibitory factor (LIF) promoted recovery after stroke through antioxidant enzyme upregulation. This study examined whether LIF promotes neuroprotection in aged rats of both sexes. LIF did not reduce tissue damage in aged animals, but LIF-treated female rats showed partial motor skill recovery. The LIF receptor (LIFR) showed membrane localization in young male and aged rats of both sexes after stroke. Although LIF increased neuronal LIFR expression in vitro, it did not increase LIFR in the aged brain. Levels of LIFR protein in brain tissue were significantly downregulated between young males and aged males/females at 72 h after stroke. These results demonstrated that low LIFR expression reduces the neuroprotective efficacy of LIF in aged rodents of both sexes. Furthermore, the ability of LIF to promote motor improvement is dependent upon sex in aged rodents.


Assuntos
Fator Inibidor de Leucemia/farmacologia , Receptores de OSM-LIF/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Fatores Etários , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Feminino , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/metabolismo , Masculino , Neurônios/metabolismo , Neuroproteção , Ratos , Ratos Sprague-Dawley , Receptores de Citocinas/metabolismo , Fatores Sexuais , Acidente Vascular Cerebral/metabolismo , Resultado do Tratamento
11.
J Neurointerv Surg ; 11(3): 265-270, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30064997

RESUMO

BACKGROUND: Ischemic stroke research faces difficulties in translating pathology between animal models and human patients to develop treatments. Mechanical thrombectomy, for the first time, offers a momentary window into the changes occurring in ischemia. We developed a tissue banking protocol to capture intracranial thrombi and the blood immediately proximal and distal to it. OBJECTIVE: To develop and share a reproducible protocol to bank these specimens for future analysis. METHODS: We established a protocol approved by the institutional review board for tissue processing during thrombectomy (www.clinicaltrials.gov NCT03153683). The protocol was a joint clinical/basic science effort among multiple laboratories and the NeuroInterventional Radiology service line. We constructed a workspace in the angiography suite, and developed a step-by-step process for specimen retrieval and processing. RESULTS: Our protocol successfully yielded samples for analysis in all but one case. In our preliminary dataset, the process produced adequate amounts of tissue from distal blood, proximal blood, and thrombi for gene expression and proteomics analyses. We describe the tissue banking protocol, and highlight training protocols and mechanics of on-call research staffing. In addition, preliminary integrity analyses demonstrated high-quality yields for RNA and protein. CONCLUSIONS: We have developed a novel tissue banking protocol using mechanical thrombectomy to capture thrombus along with arterial blood proximal and distal to it. The protocol provides high-quality specimens, facilitating analysis of the initial molecular response to ischemic stroke in the human condition for the first time. This approach will permit reverse translation to animal models for treatment development.


Assuntos
Isquemia Encefálica/cirurgia , Sistema de Registros , Acidente Vascular Cerebral/cirurgia , Trombectomia/métodos , Trombose/cirurgia , Bancos de Tecidos , Idoso , Angiografia , Animais , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/epidemiologia , Feminino , Humanos , Colaboração Intersetorial , Trombose Intracraniana/diagnóstico por imagem , Trombose Intracraniana/epidemiologia , Trombose Intracraniana/cirurgia , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/epidemiologia , Trombose/diagnóstico por imagem , Trombose/epidemiologia , Resultado do Tratamento
12.
J Neuroinflammation ; 15(1): 288, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30322390

RESUMO

BACKGROUND: The migration of peripheral immune cells and splenocytes to the ischemic brain is one of the major causes of delayed neuroinflammation after permanent large vessel stroke. Other groups have demonstrated that leukemia inhibitory factor (LIF), a cytokine that promotes neural cell survival through upregulation of antioxidant enzymes, promotes an anti-inflammatory phenotype in several types of immune cells. The goal of this study was to determine whether LIF treatment modulates the peripheral immune response after stroke. METHODS: Young male (3 month) Sprague-Dawley rats underwent sham surgery or permanent middle cerebral artery occlusion (MCAO). Animals were administered LIF (125 µg/kg) or PBS at 6, 24, and 48 h prior to euthanization at 72 h. Bone marrow-derived macrophages were treated with LIF (20 ng/ml) or PBS after stimulation with interferon gamma + LPS. Western blot was used to measure protein levels of CD11b, IL-12, interferon inducible protein-10, CD3, and the LIF receptor in spleen and brain tissue. ELISA was used to measure IL-10, IL-12, and interferon gamma. Isolectin was used to label activated immune cells in brain tissue sections. Statistical analysis was performed using one-way ANOVA and Student's t test. A Kruskal-Wallis test followed by Bonferroni-corrected Mann-Whitney tests was performed if data did not pass the D'Agostino-Pearson normality test. RESULTS: LIF-treated rats showed significantly lower levels of the LIF receptor and interferon gamma in the spleen and CD11b levels in the brain compared to their PBS-treated counterparts. Fluorescence from isolectin-binding immune cells was more prominent in the ipsilateral cortex and striatum after PBS treatment compared to LIF treatment. MCAO + LIF significantly decreased splenic levels of CD11b and CD3 compared to sham surgery. MCAO + PBS treatment significantly elevated splenic levels of interferon inducible protein-10 at 72 h after MCAO, while LIF treatment after MCAO returned interferon inducible protein 10 to sham levels. LIF administration with interferon gamma + LPS significantly reduced the IL-12/IL-10 production ratio compared to macrophages treated with interferon gamma + LPS alone. CONCLUSIONS: These data demonstrate that LIF promotes anti-inflammatory signaling through alterations of the IL-12/interferon gamma/interferon inducible protein 10 pathway.


Assuntos
Citocinas/metabolismo , Infarto da Artéria Cerebral Média , Fator Inibidor de Leucemia/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Técnicas de Cultura de Células , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/patologia , Interferon gama/uso terapêutico , Lectinas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Baço/patologia , Estatísticas não Paramétricas , Fatores de Tempo
13.
Pharm Res ; 35(1): 6, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29294201

RESUMO

PURPOSE: To synthesize and assess the in vitro biological activity of nanoparticles containing leukemia inhibitory factor (LIF). These NanoLIF particles are designed to prolong the neuroprotective and anti-inflammatory actions of LIF in future preclinical studies of ischemic stroke. METHODS: LIF was packaged in nanoparticles made of poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) polymer to form LIF-loaded nanoparticles (NanoLIF). The surface of NanoLIF was also modified with the CD11b antibody (CD11b-NanoLIF) targeting activated peripheral macrophages to increase cytokine delivery to inflammatory macrophages. ELISA was used to quantify bioactive cytokine inside and releasing from NanoLIF. NanoLIF biological activity was measured using the M1 murine leukemia cell proliferation assay. RESULTS: NanoLIF and CD11b-NanoLIF had diameters of approximately 30 nm, neutral surface charge, and physicochemical stability retaining biological activity of the cytokine during incubation at 25°C for 12 h. NanoLIF particles released LIF relatively fast from 0 to 6 h after incubation at 37°C followed by slow release from 24 to 72 h according to a two-phase exponential decay model. NanoLIF and CD11b-NanoLIF significantly decreased M1 cell proliferation over 72 h compared to free LIF. CONCLUSIONS: NanoLIF and CD11b-NanoLIF preserved the metabolic stability and biological activity of LIF in vitro. These results are promising to improve the therapeutic potential of LIF in treating neurodegenerative and inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Fator Inibidor de Leucemia/farmacologia , Nanopartículas/química , Polietilenoglicóis/química , Animais , Isquemia Encefálica/tratamento farmacológico , Antígeno CD11b/química , Antígeno CD11b/imunologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Fator Inibidor de Leucemia/química , Fator Inibidor de Leucemia/imunologia , Fator Inibidor de Leucemia/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Doenças Neurodegenerativas , Tamanho da Partícula , Acidente Vascular Cerebral/tratamento farmacológico , Propriedades de Superfície
14.
Pharmacol Ther ; 183: 50-57, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28827150

RESUMO

Several neurotropic cytokines relay their signaling through the leukemia inhibitory factor receptor. This 190kDa subunit couples with the 130kDa gp130 subunit to transduce intracellular signaling in neurons and oligodendrocytes that leads to expression of genes associated with neurosurvival. Moreover, activation of this receptor alters the phenotype of immune cells to an anti-inflammatory one. Although cytokines that activate the leukemia inhibitory factor receptor have been studied in the context of neurodegenerative disease, therapeutic targeting of the specific receptor subunit has been understudied in by comparison. This review examines the role of this receptor in the CNS and immune system, and its application in the treatment in stroke and other brain pathologies.


Assuntos
Neuroproteção , Receptores de OSM-LIF/metabolismo , Animais , Fator Neurotrófico Ciliar/metabolismo , Citocinas/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Receptores de OSM-LIF/química , Transdução de Sinais
15.
Neurochem Int ; 107: 23-32, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28043837

RESUMO

During ischemic stroke, neurons and glia are subjected to damage during the acute and neuroinflammatory phases of injury. Production of reactive oxygen species (ROS) from calcium dysregulation in neural cells and the invasion of activated immune cells are responsible for stroke-induced neurodegeneration. Scientists have failed thus far to identify antioxidant-based drugs that can enhance neural cell survival and improve recovery after stroke. However, several groups have demonstrated success in protecting against stroke by increasing expression of antioxidant enzymes in neural cells. These enzymes, which include but are not limited to enzymes in the glutathione peroxidase, catalase, and superoxide dismutase families, degrade ROS that otherwise damage cellular components such as DNA, proteins, and lipids. Several groups have identified cellular therapies including neural stem cells and human umbilical cord blood cells, which exert neuroprotective and oligoprotective effects through the release of pro-survival factors that activate PI3K/Akt signaling to upregulation of antioxidant enzymes. Other studies demonstrate that treatment with soluble factors released by these cells yield similar changes in enzyme expression after stroke. Treatment with the cytokine leukemia inhibitory factor increases the expression of peroxiredoxin IV and metallothionein III in glia and boosts expression of superoxide dismutase 3 in neurons. Through cell-specific upregulation of these enzymes, LIF and other Akt-inducing factors have the potential to protect multiple cell types against damage from ROS during the early and late phases of ischemic damage.


Assuntos
Antioxidantes/administração & dosagem , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/enzimologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/enzimologia , Animais , Catalase/antagonistas & inibidores , Catalase/biossíntese , Sistemas de Liberação de Medicamentos/tendências , Glutationa Peroxidase/antagonistas & inibidores , Glutationa Peroxidase/biossíntese , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/biossíntese
16.
Mol Neurobiol ; 54(1): 608-622, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26746670

RESUMO

Leukemia inhibitory factor (LIF) has been shown to protect oligodendrocytes from ischemia by upregulating endogenous antioxidants. The goal of this study was to determine whether LIF protects neurons during stroke by upregulating superoxide dismutase 3 (SOD3). Animals were administered phosphate-buffered saline (PBS) or 125 µg/kg LIF at 6, 24, and 48 h after middle cerebral artery occlusion or sham surgery. Neurons were isolated from rat pups on embryonic day 18 and used between 7 and 15 days in culture. Cells were treated with LIF and/or 10 µM Akt inhibitor IV with PBS and 0.1 % DMSO acting as vehicle controls. Neurons transfected with scrambled or SOD3 small interfering RNA (siRNA) were subjected to 24-h ischemia after PBS or LIF treatment. LIF significantly increased superoxide dismutase activity and SOD3 expression in ipsilateral brain tissue compared to PBS. Following 24-h ischemia, LIF reduced cell death and increased SOD3 messenger RNA (mRNA) in vitro compared to PBS. Adding Akt inhibitor IV with LIF counteracted the decrease in cell death. Partially silencing the expression of SOD3 using siRNA prior to LIF treatment counteracted the protective effect of LIF-alone PBS treatment. These results indicate that LIF protects neurons in vivo and in vitro via upregulation of SOD3.


Assuntos
Córtex Cerebral/enzimologia , Fator Inibidor de Leucemia/farmacologia , Neurônios/enzimologia , Fármacos Neuroprotetores/farmacologia , Superóxido Dismutase/biossíntese , Regulação para Cima/fisiologia , Animais , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Relação Dose-Resposta a Droga , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Regulação para Cima/efeitos dos fármacos
17.
Cell Transplant ; 24(4): 721-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25413246

RESUMO

Human umbilical cord blood (HUCB) cell therapies have shown promising results in reducing brain infarct volume and most importantly in improving neurobehavioral function in rat permanent middle cerebral artery occlusion, a model of stroke. In this study, we examined the gene expression profile in neurons subjected to oxygen-glucose deprivation (OGD) with or without HUCB treatment and identified signaling pathways (Akt/MAPK) important in eliciting HUCB-mediated neuroprotective responses. Gene chip microarray analysis was performed using RNA samples extracted from the neuronal cell cultures from four experimental groups: normoxia, normoxia+HUCB, OGD, and OGD+HUCB. Both quantitative RT-PCR and immunohistochemistry were carried out to verify the microarray results. Using the Genomatix software program, promoter regions of selected genes were compared to reveal common transcription factor-binding sites and, subsequently, signal transduction pathways. Under OGD condition, HUCB cells significantly reduced neuronal loss from 68% to 44% [one-way ANOVA, F(3, 16)=11, p=0.0003]. Microarray analysis identified mRNA expression of Prdx5, Vcam1, CCL20, Alcam, and Pax6 as being significantly altered by HUCB cell treatment. Inhibition of the Akt pathway significantly abolished the neuroprotective effect of HUCB cells [one-way ANOVA, F(3, 11)=8.663, p=0.0031]. Our observations show that HUCB neuroprotection is dependent on the activation of the Akt signaling pathway that increases transcription of the Prdx5 gene. We concluded that HUCB cell therapy would be a promising treatment for stroke and other forms of brain injury by modifying acute gene expression to promote neural cell protection.


Assuntos
Sangue Fetal/metabolismo , Regulação da Expressão Gênica , Infarto da Artéria Cerebral Média/patologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcriptoma , Animais , Sítios de Ligação , Células Cultivadas , Técnicas de Cocultura , Sangue Fetal/citologia , Sangue Fetal/transplante , Humanos , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/terapia , Neurônios/citologia , Fármacos Neuroprotetores , Análise de Sequência com Séries de Oligonucleotídeos , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
18.
Eur J Neurosci ; 40(7): 3111-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25041106

RESUMO

Human umbilical cord blood (HUCB) cells have shown efficacy in rodent models of focal ischemia and in vitro systems that recapitulate stroke conditions. One potential mechanism of protection is through secretion of soluble factors that protect neurons and oligodendrocytes (OLs) from oxidative stress. To overcome practical issues with cellular therapies, identification of soluble factors released by HUCB and other stem cells may pave the way for treatment modalities that are safer for a larger percentage of stroke patients. Among these soluble factors is leukemia inhibitory factor (LIF), a cytokine that exerts pleiotropic effects on cell survival. Here, data show that LIF effectively reduced infarct volume, reduced white matter injury and improved functional outcomes when administered to rats following permanent middle cerebral artery occlusion. To further explore downstream signaling, primary oligodendrocyte cultures were exposed to oxygen-glucose deprivation to mimic stroke conditions. LIF significantly reduced lactate dehydrogenase release from OLs, reduced superoxide dismutase activity and induced peroxiredoxin 4 (Prdx4) transcript. Additionally, the protective and antioxidant capacity of LIF was negated by both Akt inhibition and co-incubation with Prdx4-neutralising antibodies, establishing a role for the Akt signaling pathway and Prdx4-mediated antioxidation in LIF protection.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Fator Inibidor de Leucemia/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Oligodendroglia/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Fator Inibidor de Leucemia/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteína Oncogênica v-akt/metabolismo , Peroxirredoxinas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Substância Branca/efeitos dos fármacos
19.
Transl Stroke Res ; 5(5): 543-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24895236

RESUMO

Despite extensive research into stroke pathology, there have not been any major recent advancements in stroke therapeutics. Animal models of cerebral ischemia and clinical data have been used to investigate the progressive neural injury that occurs after an initial ischemic insult. This has lead researchers to focus more on the peripheral immune response that is generated as a result of cerebral ischemia. The therapies that have been developed as a result of this research thus far have proven ineffective in clinical trials. The failure of these therapeutics in clinical trials is thought to be due to the broad immunosuppression elicited as a result of the treatments and the cerebral ischemia itself. Emerging evidence indicates a more selective modulation of the immune system following stroke could be beneficial. The spleen has been shown to exacerbate neural injury following experimental stroke and would provide a strong therapeutic target. Selecting facets of the immune system to target would allow the protective and regenerative properties of the immune response to remain intact while blunting the pro-inflammatory response generated towards the injured brain.


Assuntos
Isquemia Encefálica/imunologia , Encéfalo/imunologia , Imunidade Celular , Acidente Vascular Cerebral/imunologia , Animais , Isquemia Encefálica/terapia , Citocinas/imunologia , Modelos Animais de Doenças , Humanos , Baço/imunologia , Transplante de Células-Tronco , Acidente Vascular Cerebral/terapia , Linfócitos T/imunologia
20.
J Biol Chem ; 287(6): 4177-87, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22158864

RESUMO

Human umbilical cord blood (HUCB) cells protect the brain against ischemic injury, yet the mechanism of protection remains unclear. Using both in vitro and in vivo paradigms, this study examined the role of Akt signaling and peroxiredoxin 4 expression in human umbilical cord blood cell-mediated protection of oligodendrocytes from ischemic conditions. As previously reported, the addition of HUCB cells to oligodendrocyte cultures prior to oxygen glucose deprivation significantly enhanced oligodendrocyte survival. The presence of human umbilical cord blood cells also increased Akt phosphorylation and elevated peroxiredoxin 4 expression in oligodendrocytes. Blocking either Akt or peroxiredoxin 4 activity with Akt Inhibitor IV or a peroxiredoxin 4-neutralizing antibody, respectively, negated the protective effects of human umbilical cord blood cells. In vivo, systemic administration of human umbilical cord blood cells 48 h after middle cerebral artery occlusion increased Akt phosphorylation and peroxiredoxin 4 protein expression while reducing proteolytic cleavage of caspase 3 in oligodendrocytes residing in the ipsilateral external capsule. Moreover, human umbilical cord blood cells protected striatal white matter bundles from degeneration following middle cerebral artery occlusion. These results suggest that the soluble factors released from human umbilical cord blood cells converge on Akt to elevate peroxiredoxin 4 levels, and these effects contribute to oligodendrocyte survival.


Assuntos
Isquemia Encefálica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Cordão Umbilical/citologia , Animais , Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Caspase 3/biossíntese , Sobrevivência Celular , Humanos , Oligodendroglia/patologia , Peroxirredoxinas/biossíntese , Fosforilação , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA