Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
EJHaem ; 5(1): 141-146, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38406516

RESUMO

Response to daratumumab in patients with relapsed/refractory multiple myeloma is heterogeneous, and a reliable biomarker of response is lacking. We aimed to develop a method that identifies response to daratumumab therapy. Patient-derived MM cells were collected before start of daratumumab treatment and were cultured in a hydrogel-based culture system. The extent of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in vitro was associated with both clinical response and progression-free survival in corresponding patients. Together, our results demonstrate that in vitro sensitivity to daratumumab therapy in a hydrogel culture with primary MM cells might be used to identify patients most likely to benefit from treatment.

2.
Immunol Cell Biol ; 102(4): 232-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38058197

RESUMO

Associate Professor Victor Peperzak from the University Medical Center (UMC) Utrecht in the Netherlands discusses the opportunities and challenges of building a research group in the Netherlands. Victor highlights the scientific strengths of UMC Utrecht in juxtaposition with other universities and centers around the Netherlands, and highlights the collaborative nature of the Dutch research scene.

3.
Mol Oncol ; 17(12): 2507-2525, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37704591

RESUMO

A better understanding of multiple myeloma (MM) biology has led to the development of novel therapies. However, MM is still an incurable disease and new pharmacological strategies are needed. Dinaciclib, a multiple cyclin-dependent kinase (CDK) inhibitor, which inhibits CDK1, 2, 5 and 9, displays significant antimyeloma activity as found in phase II clinical trials. In this study, we have explored the mechanism of dinaciclib-induced death and evaluated its enhancement by different BH3 mimetics in MM cell lines as well as in plasma cells from MM patients. Our results indicate a synergistic effect of dinaciclib-based combinations with B-cell lymphoma 2 or B-cell lymphoma extra-large inhibitors, especially in MM cell lines with partial dependence on myeloid cell leukemia sequence 1 (MCL-1). Simultaneous treatment with dinaciclib and BH3 mimetics ABT-199 or A-1155463 additionally showed a synergistic effect in plasma cells from MM patients, ex vivo. Altered MM cytogenetics did not affect dinaciclib response ex vivo, alone or in combined treatment, suggesting that these combinations could be a suitable therapeutic option for patients bearing cytogenetic alterations and poor prognosis. This work also opens the possibility to explore cyclin-dependent kinase 9 inhibition as a targeted therapy in MM patients overexpressing or with high dependence on MCL-1.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linhagem Celular Tumoral , Plasmócitos , Mieloma Múltiplo/tratamento farmacológico , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo , Antineoplásicos/farmacologia
4.
Front Immunol ; 14: 1229558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583696

RESUMO

Introduction: Classical Hodgkin lymphoma (cHL) is the most common pediatric lymphoma. Approximately 10% of patients develop refractory or recurrent disease. These patients are treated with intensive chemotherapy followed by consolidation with radiotherapy or high-dose chemotherapy and autologous stem cell reinfusion. Although this treatment is effective, it comes at the cost of severe long-term adverse events, such as reduced fertility and an increased risk of secondary cancers. Recently, promising results of inducing remission with the immune checkpoint inhibitor nivolumab (targeting PD-1) and the anti-CD30 antibody-drug conjugate Brentuximab vedotin (BV) +/- bendamustine were published. Methods: Here we describe a cohort of 10 relapsed and refractory pediatric cHL patients treated with nivolumab + BV +/- bendamustine to induce remission prior to consolidation with standard treatment. Results and discussion: All patients achieved complete remission prior to consolidation treatment and are in ongoing complete remission with a median follow-up of 25 months (range: 12 to 42 months) after end-of-treatment. Only one adverse event of CTCAE grade 3 or higher due to nivolumab + BV was identified. Based on these results we conclude that immunotherapy with nivolumab + BV +/- bendamustine is an effective and safe treatment to induce remission in pediatric R/R cHL patients prior to standard consolidation treatment. We propose to evaluate this treatment further to study putative long-term toxicity and the possibility to reduce the intensity of consolidation treatment.


Assuntos
Doença de Hodgkin , Humanos , Criança , Doença de Hodgkin/tratamento farmacológico , Nivolumabe/efeitos adversos , Brentuximab Vedotin/uso terapêutico , Cloridrato de Bendamustina/efeitos adversos , Resultado do Tratamento
5.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36931661

RESUMO

BACKGROUND: Initial clinical responses with gene engineered chimeric antigen receptor (CAR) T cells in cancer patients are highly encouraging; however, primary resistance and also relapse may prevent durable remission in a substantial part of the patients. One of the underlying causes is the resistance mechanisms in cancer cells that limit effective killing by CAR T cells. CAR T cells exert their cytotoxic function through secretion of granzymes and perforin. Inhibition of granzyme B (GrB) can underlie resistance to T cell-mediated killing, and it has been shown that serine proteinase inhibitor serpin B9 can effectively inhibit GrB. We aimed to determine whether expression of serpin B9 by cancer cells can lead to resistance toward CAR T cells. METHODS: Serpin B9 gene and protein expression were examined by R2 or DepMap database mining and by western blot or flow cytometric analysis, respectively. Coculture killing experiments were performed with melanoma cell line MeWo, diffuse large B cell lymphoma (DLBCL) cell line OCI-Ly7 or primary chronic lymphocytic leukemia (CLL) cells as target cells and natural killer cell line YT-Indy, CD20 CAR T cells or CD19 CAR T cells as effector cells and analyzed by flow cytometry. RESULTS: Serpin B9 protein expression was previously shown to be associated with clinical outcome in melanoma patients and in line with these observations we demonstrate that enforced serpin B9 expression in melanoma cells reduces sensitivity to GrB-mediated killing. Next, we examined serpin B9 expression in a wide array of primary tumor tissues and human cell lines to find that serpin B9 is uniformly expressed in B-cell lymphomas and most prominently in DLBCL and CLL. Subsequently, using small interfering RNA, we silenced serpin B9 expression in DLBCL cells, which increased their sensitivity to CD20 CAR T cell-mediated killing. In addition, we showed that co-ulture of primary CLL cells with CD20 CAR T cells results in selection of serpin B9-high CLL cells, suggesting these cells resist CAR T-cell killing. CONCLUSIONS: Overall, the data indicate that serpin B9 is a resistance mediator for CAR T cell-mediated tumor cell killing that should be inhibited or bypassed to improve CAR T-cell responses.


Assuntos
Leucemia Linfocítica Crônica de Células B , Serpinas , Humanos , Morte Celular , Citotoxicidade Imunológica , Serpinas/genética , Linfócitos T
8.
Cancers (Basel) ; 13(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34572895

RESUMO

Multiple myeloma (MM) is a hematological malignancy that is still considered incurable due to the development of therapy resistance and subsequent relapse of disease. MM plasma cells (PC) use NFκB signaling to stimulate cell growth and disease progression, and for protection against therapy-induced apoptosis. Amongst its diverse array of target genes, NFκB regulates the expression of pro-survival BCL-2 proteins BCL-XL, BFL-1, and BCL-2. A possible role for BFL-1 in MM is controversial, since BFL-1, encoded by BCL2A1, is downregulated when mature B cells differentiate into antibody-secreting PC. NFκB signaling can be activated by many factors in the bone marrow microenvironment and/or induced by genetic lesions in MM PC. We used the novel signal transduction pathway activity (STA) computational model to quantify the functional NFκB pathway output in primary MM PC from diverse patient subsets at multiple stages of disease. We found that NFκB pathway activity is not altered during disease development, is irrespective of patient prognosis, and does not predict therapy outcome. However, disease relapse after treatment resulted in increased NFκB pathway activity in surviving MM PC, which correlated with increased BCL2A1 expression in a subset of patients. This suggests that BFL-1 upregulation, in addition to BCL-XL and BCL-2, may render MM PC resistant to therapy-induced apoptosis, and that BFL-1 targeting could provide a new approach to reduce therapy resistance in a subset of relapsed/refractory MM patients.

9.
Blood Adv ; 5(12): 2593-2607, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34152396

RESUMO

Novel combination therapies have markedly improved the lifespan of patients with multiple myeloma (MM), but drug resistance and disease relapse remain major clinical problems. Dexamethasone and other glucocorticoids are a cornerstone of conventional and new combination therapies for MM, although their use is accompanied by serious side effects. We aimed to uncover drug combinations that act in synergy and, as such, allow reduced dosing while remaining effective. Dexamethasone and the myeloid cell leukemia 1 (MCL-1) inhibitor S63845 (MCL-1i) proved the most potent combination in our lethality screen and induced apoptosis of human myeloma cell lines (HMCLs) that was 50% higher compared with an additive drug effect. Kinome analysis of dexamethasone-treated HMCLs revealed a reduction in serine/threonine peptide phosphorylation, which was predicted to result from reduced Akt activity. Biochemical techniques showed no dexamethasone-induced effects on FOXO protein or GSK3 but did show a 50% reduction in P70S6K phosphorylation, downstream of the Akt-mTORC1 axis. Replacing dexamethasone by the P70S6K1 isoform-specific inhibitor PF-4708671 (S6K1i) revealed similar and statistically significant synergistic apoptosis of HMCLs in combination with MCL-1i. Interestingly, apoptosis induced by the P70S6K1i and MCL-1i combination was more-than-additive in all 9 primary MM samples tested; this effect was observed for 6 of 9 samples with the dexamethasone and MCL-1i combination. Toxicity on stem and progenitor cell subsets remained minimal. Combined, our results show a strong rationale for combination treatments using the P70S6K inhibitor in MM. Direct and specific inhibition of P70S6K may also provide a solution for patients ineligible or insensitive to dexamethasone or other glucocorticoids.


Assuntos
Mieloma Múltiplo , Linhagem Celular Tumoral , Dexametasona/farmacologia , Quinase 3 da Glicogênio Sintase , Humanos , Mieloma Múltiplo/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Quinases S6 Ribossômicas 70-kDa
10.
Cancers (Basel) ; 13(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066840

RESUMO

B-cell malignancies arise from different stages of B-cell differentiation and constitute a heterogeneous group of cancers including B-cell lymphomas, B-cell leukemias, and plasma cell dyscrasias [...].

11.
Cell Death Dis ; 12(3): 229, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658484

RESUMO

Multiple myeloma (MM), a treatable but incurable malignancy, is characterized by the growth of clonal plasma cells in protective niches in the bone marrow. MM cells depend on expression of BCL-2 family proteins, in particular MCL-1, for survival. The regulation of MCL-1 is complex and cell type-dependent. Unraveling the exact mechanism by which MCL-1 is overexpressed in MM may provide new therapeutic strategies for inhibition in malignant cells, preferably limiting side effects in healthy cells. In this study, we reveal that one cause of overexpression could be stabilization of the MCL-1 protein. We demonstrate this in a subset of MM and diffuse large B cell lymphoma (DLBCL) cell lines and MM patient samples. We applied a phosphatase siRNA screen to identify phosphatases responsible for MCL-1 stabilization in MM, and revealed PP2A as the MCL-1 stabilizing phosphatase. Using the PP2A inhibitor okadaic acid, we validated that PP2A dephosphorylates MCL-1 at Ser159 and/or Thr163, and thereby stabilizes MCL-1 in MM cells with long MCL-1 half-life, but not in DLBCL cells. Combined kinase and phosphatase inhibition experiments suggest that the MCL-1 half-life in MM is regulated by the counteracting functions of JNK and PP2A. These findings increase the understanding of the mechanisms by which MCL-1 is post-translationally regulated, which may provide novel strategies to inhibit MCL-1 in MM cells.


Assuntos
Linfoma Difuso de Grandes Células B/enzimologia , Mieloma Múltiplo/enzimologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Meia-Vida , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Fosforilação , Proteína Fosfatase 2/genética , Estabilidade Proteica , Proteólise
12.
Immunother Adv ; 1(1): ltab001, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35919738

RESUMO

After initial introduction for B-cell lymphomas as adjuvant therapies to established cancer treatments, immune checkpoint inhibitors and other immunotherapies are now integrated in mainstream regimens, both in adult and pediatric patients. We here provide an overview of the current status of combination therapies for B-cell lymphoma, by in-depth analysis of combination therapy trials registered between 2015-2020. Our analysis provides new insight into the rapid evolution in lymphoma treatment, as propelled by new additions to the treatment arsenal. We conclude with prospects on upcoming clinical trials which will likely use systematic testing approaches of more combinations of established chemotherapy regimens with new agents, as well as new combinations of immunotherapy and targeted therapy. Future trials will be set up as basket or umbrella-type trials to facilitate the evaluation of new drugs targeting specific genetic changes in the tumor or associated immune microenvironment. As such, lymphoma patients will benefit by receiving more tailored treatment that is based on synergistic effects of chemotherapy combined with new agents targeting specific aspects of tumor biology and the immune system.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32733861

RESUMO

Mimicking endochondral bone formation is a promising strategy for bone regeneration. To become a successful therapy, the cell source is a crucial translational aspect. Typically, autologous cells are used. The use of non-autologous mesenchymal stromal cells (MSCs) represents an interesting alternative. Nevertheless, non-autologous, differentiated MSCs may trigger an undesired immune response, hampering bone regeneration. The aim of this study was to unravel the influence of the immune response on endochondral bone regeneration, when using xenogeneic (human) or allogeneic (Dark Agouti) MSCs. To this end, chondrogenically differentiated MSCs embedded in a collagen carrier were implanted in critical size femoral defects of immunocompetent Brown Norway rats. Control groups were included with syngeneic/autologous (Brown Norway) MSCs or a cell-free carrier. The amount of neo-bone formation was proportional to the degree of host-donor relatedness, as no full bridging of the defect was observed in the xenogeneic group whereas 2/8 and 7/7 bridges occurred in the allogeneic and the syngeneic group, respectively. One week post-implantation, the xenogeneic grafts were invaded by pro-inflammatory macrophages, T lymphocytes, which persisted after 12 weeks, and anti-human antibodies were developed. The immune response toward the allogeneic graft was comparable to the one evoked by the syngeneic implants, aside from an increased production of alloantibodies, which might be responsible for the more heterogeneous bone formation. Our results demonstrate for the first time the feasibility of using non-autologous MSC-derived chondrocytes to elicit endochondral bone regeneration in vivo. Nevertheless, the pronounced immune response and the limited bone formation observed in the xenogeneic group undermine the clinical relevance of this group. On the contrary, although further research on how to achieve robust bone formation with allogeneic cells is needed, they may represent an alternative to autologous transplantation.

14.
Blood Adv ; 3(24): 4202-4214, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31856269

RESUMO

Prosurvival BCL-2 family proteins are potent inhibitors of apoptosis and often overexpressed in lymphoid malignancies. In multiple myeloma (MM), MCL-1 expression contributes to survival of malignant plasma cells, and overexpression correlates with poor prognosis. In this study, we investigated whether sensitivity to the novel MCL-1 inhibitor S63845 could be predicted using cytogenetics, focusing on amplification of 1q21, the chromosomal region that contains the MCL1 locus. In addition, we studied the relation of MCL-1 inhibitor sensitivity with other diagnostic characteristics and BCL-2 family protein expression. In 31 human myeloma cell lines and in bone marrow aspirates from 47 newly diagnosed MM patients, we measured the effect of S63845 alone, or combined with BCL-2 inhibitor ABT-199 (venetoclax), and BCL-XL inhibitor A-1155463 or A-1331852 on cell viability. We demonstrated for the first time that MM cells from patients with 1q21 amplification are significantly more sensitive to inhibition of MCL-1. We suggest that this increased sensitivity results from high relative MCL1 expression resulting from amplification of 1q21. Additionally, and partially independent from 1q21 status, high serum ß2 microglobulin level and presence of renal insufficiency correlated with increased sensitivity to MCL-1 inhibitor treatment. Combining S63845 with other BH3 mimetics synergistically enhanced apoptosis compared with single inhibitors, and sensitivity to inhibitor combinations was found in a large proportion of MM insensitive to MCL-1 inhibition alone. Collectively, our data indicate that amplification of 1q21 identifies an MM subset highly sensitive to MCL-1 inhibitor treatment and can be used as a predictive marker to guide selection of therapy.


Assuntos
Antineoplásicos/farmacologia , Cromossomos Humanos Par 1/genética , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes , Mieloma Múltiplo/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Front Oncol ; 8: 533, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524962

RESUMO

Apoptosis plays a key role in protection against genomic instability and maintaining tissue homeostasis, and also shapes humoral immune responses. During generation of an antibody response, multiple rounds of B-cell expansion and selection take place in germinal centers (GC) before high antigen affinity memory B-cells and long-lived plasma cells (PC) are produced. These processes are tightly regulated by the intrinsic apoptosis pathway, and malignant transformation throughout and following the GC reaction is often characterized by apoptosis resistance. Expression of pro-survival BCL-2 family protein MCL-1 is essential for survival of malignant PC in multiple myeloma (MM). In addition, BCL-2 and BCL-XL contribute to apoptosis resistance. MCL-1, BCL-2, and BCL-XL expression is induced and maintained by signals from the bone marrow microenvironment, but overexpression can also result from genetic lesions. Since MM PC depend on these proteins for survival, inhibiting pro-survival BCL-2 proteins using novel and highly specific BH3-mimetic inhibitors is a promising strategy for treatment. This review addresses the role and regulation of pro-survival BCL-2 family proteins during healthy PC differentiation and in MM, as well as their potential as therapeutic targets.

16.
J Hematol Oncol ; 11(1): 67, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776381

RESUMO

Multiple myeloma is the second most frequent hematological malignancy in the western world and remains incurable, predominantly due to acquired drug resistance and disease relapse. The highly conserved Wnt signal transduction pathway, which plays a key role in regulating cellular processes of proliferation, differentiation, migration, and stem cell self-renewal, is associated with multiple aspects of disease. Bone homeostasis is severely disturbed by Wnt antagonists that are secreted by the malignant plasma cells in the bone marrow. In the vast majority of patients, this results in osteolytic bone disease, which is associated with bone pain and pathological fractures and was reported to facilitate disease progression. More recently, cumulative evidence also indicates the importance of intrinsic Wnt signaling in the survival of multiple myeloma cells. However, Wnt pathway-activating gene mutations could not be identified. The search for factors or processes responsible for Wnt pathway activation currently focuses on aberrant ligand levels in the bone marrow microenvironment, increased expression of Wnt transcriptional co-factors and associated micro-RNAs, and disturbed epigenetics and post-translational modification processes. Furthermore, Wnt pathway activation is associated with acquired cell adhesion-mediated resistance of multiple myeloma cells to conventional drug therapies, including doxorubicin and lenalidomide. In this review, we present an overview of the relevance of Wnt signaling in multiple myeloma and highlight the Wnt pathway as a potential therapeutic target for this disease.


Assuntos
Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/fisiopatologia , Via de Sinalização Wnt , Animais , Doenças Ósseas/etiologia , Resistência a Medicamentos , Humanos , Terapia de Alvo Molecular , Mieloma Múltiplo/complicações , Mieloma Múltiplo/patologia , Osteólise/etiologia
17.
Cancer Res ; 78(10): 2449-2456, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29703720

RESUMO

Multiple myeloma (MM) is a treatable, but incurable, malignancy of plasma cells (PC) in the bone marrow (BM). It represents the final stage in a continuum of PC dyscrasias and is consistently preceded by a premalignant phase termed monoclonal gammopathy of undetermined significance (MGUS). The existence of this well-defined premalignant phase provides the opportunity to study clonal evolution of a premalignant condition into overt cancer. Unraveling the mechanisms of malignant transformation of PC could enable early identification of MGUS patients at high risk of progression and may point to novel therapeutic targets, thereby possibly delaying or preventing malignant transformation. The MGUS-to-MM progression requires multiple genomic events and the establishment of a permissive BM microenvironment, although it is generally not clear if the various microenvironmental events are causes or consequences of disease progression. Advances in gene-sequencing techniques and the use of serial paired analyses have allowed for a more specific identification of driver lesions. The challenge in cancer biology is to identify and target those lesions that confer selective advantage and thereby drive evolution of a premalignant clone. Here, we review recent advances in the understanding of malignant transformation of MGUS to MM. Cancer Res; 78(10); 2449-56. ©2018 AACR.


Assuntos
Transformação Celular Neoplásica/genética , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/patologia , Plasmócitos/patologia , Lesões Pré-Cancerosas/patologia , Medula Óssea/patologia , Células da Medula Óssea/patologia , Transformação Celular Neoplásica/patologia , Evolução Clonal/fisiologia , Variações do Número de Cópias de DNA/genética , Progressão da Doença , Humanos , Gamopatia Monoclonal de Significância Indeterminada/genética , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mutação/genética , Microambiente Tumoral/fisiologia
18.
Nat Commun ; 8(1): 1028, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044097

RESUMO

The Tet-On/Off system for conditional transgene expression constitutes state-of-the-art technology to study gene function by facilitating inducible expression in a timed and reversible manner. Several studies documented the suitability and versatility of this system to trace lymphocyte fate and to conditionally express oncogenes or silence tumour suppressor genes in vivo. Here, we show that expression of the tetracycline/doxycycline-controlled Tet-transactivator, while tolerated well during development and in immunologically unchallenged animals, impairs the expansion of antigen-stimulated T and B cells and thereby curtails adaptive immune responses in vivo. Transactivator-mediated cytotoxicity depends on DNA binding, but can be overcome by BCL2 overexpression, suggesting that apoptosis induction upon lymphocyte activation limits cellular and humoral immune responses. Our findings suggest a possible system-intrinsic biological bias of the Tet-On/Off system in vivo that will favour the outgrowth of apoptosis resistant clones, thus possibly confounding data published using such systems.


Assuntos
Ativação Linfocitária , Linfócitos/imunologia , Tetraciclina/farmacologia , Transativadores/genética , Animais , Feminino , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Transativadores/imunologia
19.
Cell Rep ; 19(3): 461-470, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423310

RESUMO

Humoral immune responses are tailored to the invading pathogen through regulation of key transcription factors and their networks. This is critical to establishing effective antibody-mediated responses, yet it is unknown how B cells integrate pathogen-induced signals to drive or suppress transcriptional programs specialized for each class of pathogen. Here, we detail the key role of the transcription factor c-Myb in regulating the T-bet-mediated anti-viral program. Deletion of c-Myb in mature B cells significantly increased serum IgG2c and CXCR3 expression by upregulating T-bet, normally suppressed during Th2-cell-mediated responses. Enhanced expression of T-bet resulted in aberrant plasma cell differentiation within the germinal center, mediated by CXCR3 expression. These findings identify a dual role for c-Myb in limiting inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Identifying such intrinsic regulators of specialized antibody responses can assist in vaccine design and therapeutic intervention in B-cell-mediated immune disorders.


Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Afinidade de Anticorpos , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Humanos , Masculino , Camundongos , Plasmócitos/citologia , Plasmócitos/metabolismo , Proteínas Proto-Oncogênicas c-myb/deficiência , Receptores CXCR3/metabolismo , Sindecana-1/metabolismo , Transcrição Gênica
20.
Cell Death Differ ; 24(1): 111-119, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27689871

RESUMO

For successful treatment of malignant B-cells it is crucial to understand intrinsic survival requirements in relation to their normal progenitors. Long-lived humoral immunity as well as most B-cell malignancies, originate in the germinal center (GC). Murine GC B-cells depend on pro-survival protein MCL-1, but not BCL-XL. In contrast, naive and memory B-cells depend on BCL-2, but not BCL-XL or MCL-1. For human B-cell subsets, the functional relationships among BCL-2 members are unclear, and also if and how they shift after malignant transformation. We here dissect these aspects in human tonsil and primary leukemia (CLL) cells by single and combined treatment with novel, highly specific BH3-mimetics. We found that MCL-1 expression in GC B-cells is regulated post-translationally and its importance is highlighted by preferential binding to pro-apoptotic BIM. In contrast, BCL-XL is transcriptionally induced and binds solely to weak sensitizer BIK, potentially explaining why BCL-XL is not required for GC B-cell survival. Using novel BH3-mimetics, we found that naive and memory B-cells depend on BCL-2, GC cells predominantly on MCL-1, whereas plasma cells need both BCL-XL and MCL-1 for survival. CLL cells switch from highly sensitive for BCL-2 inhibition to resistant after CD40-stimulation. However, combined inhibition of BCL-2, plus BCL-XL or MCL-1 effectively kills these cells, thus exposing a weakness that may be therapeutically useful. These general principles offer important clues for designing treatment strategies for B-cell malignancies.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Centro Germinativo/citologia , Centro Germinativo/imunologia , Humanos , Indóis/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Mitocondriais , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA