Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(3): 101056, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375641

RESUMO

Genetic studies have identified BIN1 as the second most important risk locus associated with late-onset Alzheimer's disease (LOAD). However, it is unclear how mutation of this locus mechanistically promotes Alzheimer's disease (AD) pathology. Here we show the consequences of two coding variants in BIN1 (rs754834233 and rs138047593), both in terms of intracellular beta-amyloid (iAbeta) accumulation and early endosome enlargement, two interrelated early cytopathological AD phenotypes, supporting their association with LOAD risk. We previously found that Bin1 deficiency potentiates iAbeta production by enabling BACE1 cleavage of the amyloid precursor protein in enlarged early endosomes due to decreased BACE1 recycling. Here, we discovered that the expression of the two LOAD mutant forms of Bin1 does not rescue the iAbeta accumulation and early endosome enlargement induced by Bin1 knockdown and recovered by wild-type Bin1. Moreover, the overexpression of Bin1 mutants, but not wild-type Bin1, increased the iAbeta42 fragment by reducing the recycling of BACE1, which accumulated in early endosomes, recapitulating the phenotype of Bin1 knockdown. We showed that the mutations in Bin1 reduced its interaction with BACE1. The endocytic recycling of transferrin was similarly affected, indicating that Bin1 is a general regulator of endocytic recycling. These data demonstrate that the LOAD-coding variants in Bin1 lead to a loss of function in endocytic recycling, which may be an early causal mechanism of LOAD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Endossomos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleotídeo Único , Transporte Proteico , Proteínas Supressoras de Tumor/metabolismo
2.
Cell Cycle ; 17(13): 1649-1666, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963969

RESUMO

Membrane lipid rafts are highly ordered microdomains and essential components of plasma membranes. In this work, we demonstrate that azurin uptake by cancer cells is, in part, mediated by caveolin-1 and GM-1, lipid rafts' markers. This recognition is mediated by a surface exposed hydrophobic core displayed by azurin since the substitution of a phenylalanine residue in position 114 facing the hydrophobic cavity by alanine impacts such interactions, debilitating the uptake of azurin by cancer cells. Treating of cancer cells with azurin leads to a sequence of events: alters the lipid raft exposure at plasma membranes, causes a decrease in the plasma membrane order as examined by Laurdan two-photon imaging and leads to a decrease in the levels of caveolin-1. Caveolae, a subset of lipid rafts characterized by the presence of caveolin-1, are gaining increasing recognition as mediators in tumor progression and resistance to standard therapies. We show that azurin inhibits growth of cancer cells expressing caveolin-1, and this inhibition is only partially observed with mutant azurin. Finally, the simultaneous administration of azurin with anticancer therapeutic drugs (paclitaxel and doxorubicin) results in an enhancement in their activity, contrary to the mutated protein.


Assuntos
Antineoplásicos/farmacologia , Azurina/metabolismo , Caveolina 1/metabolismo , Gangliosídeo G(M1)/metabolismo , Fluidez de Membrana , Microdomínios da Membrana/metabolismo , Sequência de Aminoácidos , Azurina/química , Azurina/genética , Caveolina 1/química , Linhagem Celular Tumoral , Humanos , Proteínas Mutantes/metabolismo , Mutação Puntual/genética , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA