Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37761963

RESUMO

Renal hypouricemia (RHUC) is a rare hereditary disorder caused by loss-of-function mutations in the SLC22A12 (RHUC type 1) or SLC2A9 (RHUC type 2) genes, encoding urate transporters URAT1 and GLUT9, respectively, that reabsorb urate in the renal proximal tubule. The characteristics of this disorder are low serum urate levels, high renal fractional excretion of urate, and occasional severe complications such as nephrolithiasis and exercise-induced acute renal failure. In this study, we report two Spanish (Caucasian) siblings and a Pakistani boy with clinical characteristics compatible with RHUC. Whole-exome sequencing (WES) analysis identified two homozygous variants: a novel pathogenic SLC22A12 variant, c.1523G>A; p.(S508N), in the two Caucasian siblings and a previously reported SLC2A9 variant, c.646G>A; p.(G216R), in the Pakistani boy. Our findings suggest that these two mutations cause RHUC through loss of urate reabsorption and extend the SLC22A12 mutation spectrum. In addition, this work further emphasizes the importance of WES analysis in clinical settings.


Assuntos
Transportadores de Ânions Orgânicos , Erros Inatos do Transporte Tubular Renal , Masculino , Humanos , Sequenciamento do Exoma , Ácido Úrico , Erros Inatos do Transporte Tubular Renal/genética , Biologia Computacional , Doenças Raras , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/genética
2.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176161

RESUMO

Renal hypouricemia (RHUC) is a rare inherited disorder characterized by impaired urate reabsorption in the proximal tubule resulting in low urate serum levels and increased urate excretion. Some patients may present severe complications such as exercise-induced acute renal failure and nephrolithiasis. RHUC is caused by inactivating mutations in the SLC22A12 (RHUC type 1) or SLC2A9 (RHUC type 2) genes, which encode urate transporters URAT1 and GLUT9, respectively. In this study, our goal was to identify mutations associated with twenty-one new cases with RHUC through direct sequencing of SLC22A12 and SLC2A9 coding exons. Additionally, we carried out an SNPs-haplotype analysis to determine whether the rare SLC2A9 variant c.374C>T; p.(T125M), which is recurrent in Spanish families with RHUC type 2, had a common-linked haplotype. Six intragenic informative SNPs were analyzed using PCR amplification from genomic DNA and direct sequencing. Our results showed that ten patients carried the SLC22A12 mutation c.1400C>T; p.(T467M), ten presented the SLC2A9 mutation c.374C>T, and one carried a new SLC2A9 heterozygous mutation, c.593G>A; p.(R198H). Patients carrying the SLC2A9 mutation c.374C>T share a common-linked haplotype, confirming that it emerged due to a founder effect.


Assuntos
Cálculos Renais , Transportadores de Ânions Orgânicos , Humanos , Ácido Úrico , Efeito Fundador , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Transportadores de Ânions Orgânicos/genética
3.
Kidney Res Clin Pract ; 40(4): 512-526, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34784661

RESUMO

In the kidney, a set of proteins expressed in the epithelial cells of the thick ascending loop of Henle and the distal convoluted tubule directly or indirectly play important roles in the regulation of serum magnesium levels. Magnesium reabsorption in the thick ascending loop of Henle occurs through a passive paracellular pathway, while in the distal convoluted tubule, the final magnesium concentration is established through an active transcellular pathway. The players involved in magnesium reabsorption include proteins with diverse functions including tight junction proteins, cation and anion channels, sodium chloride cotransporter, calcium-sensing receptor, epidermal growth factor, cyclin M2, sodium potassium adenosine triphosphatase subunits, transcription factors, a serine protease, and proteins involved in mitochondrial function. Mutations in the genes that encode these proteins impair their function and cause different rare diseases associated with hypomagnesemia, which may lead to muscle cramps, fatigue, epileptic seizures, intellectual disability, cardiac arrhythmias, and chronic kidney disease. The purpose of this review is to describe the clinical and genetic characteristics of these hereditary kidney diseases and the current research findings on the pathophysiological basis of these diseases.

4.
Intractable Rare Dis Res ; 9(4): 222-228, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33139981

RESUMO

The oculocerebrorenal syndrome of Lowe is a rare X-linked disease characterized by congenital cataracts, proximal renal tubulopathy, muscular hypotonia and mental impairment. This disease is caused by mutations in the OCRL gene encoding membrane bound inositol polyphosphate 5-phosphatase OCRL1. Here, we examined the OCRL gene of two Lowe syndrome patients and report two new missense mutations that affect the ASH domain involved in protein-protein interactions. Genomic DNA was extracted from peripheral blood of two non-related patients and their relatives. Exons and flanking intronic regions of OCRL were analyzed by direct sequencing. Several bioinformatics tools were used to assess the pathogenicity of the variants. The three-dimensional structure of wild-type and mutant ASH domains was modeled using the online server SWISS-MODEL. Clinical features suggesting the diagnosis of Lowe syndrome were observed in both patients. Genetic analysis revealed two novel missense variants, c.1907T>A (p.V636E) and c.1979A>C (p.H660P) in exon 18 of the OCRL gene confirming the clinical diagnosis in both cases. Variant c.1907T>A (p.V636E) was inherited from the patient's mother, while variant c.1979A>C (p.H660P) seems to have originated de novo. Analysis with bioinformatics tools indicated that both variants are pathogenic. Both amino acid changes affect the structure of the OCRL1 ASH domain. In conclusion, the identification of two novel missense mutations located in the OCRL1 ASH domain may shed more light on the functional importance of this domain. We suggest that p.V636E and p.H660P cause Lowe syndrome by disrupting the interaction of OCRL1 with other proteins or by impairing protein stability.

5.
Biomed Rep ; 13(5): 49, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32963778

RESUMO

Nail-Patella syndrome (NPS) is an inherited disease characterized by nail and skeletal anomalies, nephropathy and glaucoma. The diagnosis of NPS is based on clinical findings, including hypoplastic or absent patella, dystrophic nails, dysplasia of the elbows and iliac horns. However, the main determinant of NPS prognosis is nephropathy, which may range from asymptomatic proteinuria to end-stage renal disease. NPS is caused by heterozygous loss-of-function mutations in the LMX1B gene, which encodes the LIM homeodomain transcription factor LMX1B. LMX1B serves an essential role in the physiological development of dorsal-ventral limb structures, morphogenesis and function of podocytes, as well as in development of the anterior segments of the eyes, and in certain types of neurons. The present study aimed to identify the disease-causing mutation in a 2-year old girl with nephrotic syndrome that evolved rapidly to end-stage renal disease. The patient showed classical symptoms of NPS including dystrophic nails and an absence of the patellae. DNA sequence analysis identified a novel missense variant in exon 4 of LMX1B (c.709T>C, p.S237P); this substitution affected a conserved serine residue in the homeodomain of LMX1B and was predicted to be pathogenic. In silico modeling of the homeodomain revealed that the p.S237P mutation converted the A236-S237-F238 segment of α-helix 1 into a strand. It was hypothesized that this mutation affected binding of the transcription factor to its target DNA, thus abrogating transcription activation, which would explain the phenotype that manifested in the patient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA