Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 13(7): 3349-59, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24850311

RESUMO

The most used cancer serum biomarker is the CA125 immunoassay for ovarian cancer that detects the mucin glycoprotein MUC16. Several monoclonal antibodies (mAbs) including OC125 and M11 are used in CA125 assays. However, despite considerable efforts, our knowledge of the molecular characteristics of the recognized epitopes and the role played by glycosylation has remained elusive. Here a comprehensive set of recombinant MUC16 tandem repeats (TRs) expressed in glycoengineered mammalian cells and E. coli, together with overlapping peptides, was used to probe antigen-binding epitopes. We present a complete analysis of N- and O-glycosylation sites of a MUC16 TR expressed in CHO cells and demonstrate that neither N- nor O-glycosylation appear to substantially influence binding of OC125 and M11 mAbs. A series of successive N- and C-terminal truncations of a MUC16 TR construct expressed in E. coli narrowed down the epitopes for OC125 and M11 to a segment containing parts of two consecutive SEA domains with a linker. Thus, a complete SEA domain is not required. These findings suggest that binding epitopes of mAbs OC125 and M11 are dependent on conformation but not on glycosylation. The availability of recombinant TR constructs with and without aberrant glycosylation now opens the way for vaccine studies.


Assuntos
Anticorpos Monoclonais Murinos/química , Antígeno Ca-125/imunologia , Proteínas de Membrana/imunologia , Animais , Antígeno Ca-125/química , Antígeno Ca-125/metabolismo , Células CHO , Cricetinae , Cricetulus , Mapeamento de Epitopos , Glicosilação , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína
2.
Acta Biomater ; 10(3): 1227-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24316365

RESUMO

Blood-contacting medical devices have been associated with severe clinical complications, such as thrombus formation, triggered by the activation of the coagulation cascade due to the adsorption of certain plasma proteins on the surface of biomaterials. Hence, the coating of such surfaces with antithrombotic agents has been used to increase biomaterial haemocompatibility. Biomaterial-induced clotting may also be decreased by albumin adsorption from blood plasma in a selective and reversible way, since this protein is not involved in the coagulation cascade. In this context, this paper reports that the immobilization of the thrombin inhibitor D-Phe-Pro-D-Arg-D-Thr-CONH2 (fPrt) onto nanostructured surfaces induces selective and reversible adsorption of albumin, delaying the clotting time when compared to peptide-free surfaces. fPrt, synthesized with two glycine residues attached to the N-terminus (GGfPrt), was covalently immobilized onto self-assembled monolayers (SAMs) having different ratios of carboxylate-hexa(ethylene glycol)- and tri(ethylene glycol)-terminated thiols (EG6-COOH/EG3) that were specifically designed to control GGfPrt orientation, exposure and density at the molecular level. In solution, GGfPrt was able to inactivate the enzymatic activity of thrombin and to delay plasma clotting time in a concentration-dependent way. After surface immobilization, and independently of its concentration, GGfPrt lost its selectivity to thrombin and its capacity to inhibit thrombin enzymatic activity against the chromogenic substrate n-p-tosyl-Gly-Pro-Arg-p-nitroanilide. Nevertheless, surfaces with low concentrations of GGfPrt could delay the capacity of adsorbed thrombin to cleave fibrinogen. In contrast, GGfPrt immobilized in high concentrations was found to induce the procoagulant activity of the adsorbed thrombin. However, all surfaces containing GGfPrt have a plasma clotting time similar to the negative control (empty polystyrene wells), showing resistance to coagulation, which is explained by its capacity to adsorb albumin in a selective and reversible way. This work opens new perspectives to the improvement of the haemocompatibility of blood-contacting medical devices.


Assuntos
Albuminas/metabolismo , Antitrombinas/farmacologia , Peptídeos/farmacologia , Trombina/farmacologia , Adsorção , Fibrinogênio/metabolismo , Ouro/farmacologia , Humanos , Hidrólise/efeitos dos fármacos , Proteínas Imobilizadas/farmacologia , Radioisótopos do Iodo , Nitrogênio/farmacologia , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
3.
PLoS Pathog ; 9(2): e1003128, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23468618

RESUMO

AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-κB p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-κB are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-κB at the Cys(39)-Glu(40) peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/fisiologia , Toxinas Bacterianas/metabolismo , Metaloproteases/metabolismo , Photobacterium/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores de Virulência/metabolismo , Animais , Bass , Doenças dos Peixes/metabolismo , Interações Hospedeiro-Patógeno , Leucócitos/metabolismo , Leucócitos/patologia , Proteínas Recombinantes
4.
Fish Shellfish Immunol ; 34(6): 1611-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23523749

RESUMO

Mammalian calreticulin (CRT) is a key molecular chaperone and regulator of Ca(2+) homeostasis in endoplasmic reticulum (ER), also being implicated in a variety of physiological/pathological processes outside the ER. Importantly, it is involved in assembly of MHC class I molecules. In this work, sea bass (Dicentrarchus labrax) CRT (Dila-CRT) gene and cDNA have been isolated and characterized. The mature protein retains two conserved motifs, three structural/functional domains (N, P and C), three type 1 and 2 motifs repeated in tandem, a conserved pair of cysteines and ER-retention motif. It is a single-copy gene composed of 9 exons. Dila-CRT three-dimensional homology models are consistent with the structural features described for mammalian molecules. Together, these results are supportive of a highly conserved structure of CRT through evolution. Moreover, the present data provides information that will allow further studies on sea bass CRT involvement in immunity and in particular class I antigen presentation.


Assuntos
Bass/genética , Calreticulina/genética , Proteínas de Peixes/genética , Sequência de Aminoácidos , Animais , Bass/metabolismo , Southern Blotting , Calreticulina/química , Calreticulina/metabolismo , Clonagem Molecular , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , Alinhamento de Sequência
5.
PLoS One ; 7(3): e34354, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457833

RESUMO

The tremendous social and economic impact of thrombotic disorders, together with the considerable risks associated to the currently available therapies, prompt for the development of more efficient and safer anticoagulants. Novel peptide-based thrombin inhibitors were identified using in silico structure-based design and further validated in vitro. The best candidate compounds contained both L- and D-amino acids, with the general sequence D-Phe(P3)-Pro(P2)-D-Arg(P1)-P1'-CONH2. The P1' position was scanned with L- and D-isomers of natural or unnatural amino acids, covering the major chemical classes. The most potent non-covalent and proteolysis-resistant inhibitors contain small hydrophobic or polar amino acids (Gly, Ala, Ser, Cys, Thr) at the P1' position. The lead tetrapeptide, D-Phe-Pro-D-Arg-D-Thr-CONH2, competitively inhibits α-thrombin's cleavage of the S2238 chromogenic substrate with a K(i) of 0.92 µM. In order to understand the molecular details of their inhibitory action, the three-dimensional structure of three peptides (with P1' L-isoleucine (fPrI), L-cysteine (fPrC) or D-threonine (fPrt)) in complex with human α-thrombin were determined by X-ray crystallography. All the inhibitors bind in a substrate-like orientation to the active site of the enzyme. The contacts established between the D-Arg residue in position P1 and thrombin are similar to those observed for the L-isomer in other substrates and inhibitors. However, fPrC and fPrt disrupt the active site His57-Ser195 hydrogen bond, while the combination of a P1 D-Arg and a bulkier P1' residue in fPrI induce an unfavorable geometry for the nucleophilic attack of the scissile bond by the catalytic serine. The experimental models explain the observed relative potency of the inhibitors, as well as their stability to proteolysis. Moreover, the newly identified direct thrombin inhibitors provide a novel pharmacophore platform for developing antithrombotic agents by exploring the conformational constrains imposed by the D-stereochemistry of the residues at positions P1 and P1'.


Assuntos
Antitrombinas/farmacologia , Desenho de Fármacos , Oligopeptídeos/farmacologia , Antitrombinas/química , Humanos , Oligopeptídeos/química
6.
Fish Shellfish Immunol ; 23(3): 701-10, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17433716

RESUMO

In the search for pro-inflammatory genes in sea bass a TNF-alpha gene was cloned and sequenced. The sea bass TNF-alpha (sbTNF-alpha) putative protein conserves the TNF-alpha family signature, as well as the two cysteines usually involved in the formation of a disulfide bond. The mouse TNF-alpha Thr-Leu cleavage sequence and a potential transmembrane domain were also found, suggesting that sbTNF-alpha exists as two forms: a approximately 28 kDa membrane-bound form and a approximately 18.4 kDa soluble protein. The single copy sbTNF-alpha gene contains a four exon-three intron structure similar to other known TNF-alpha genes. Homology modeling of sbTNF-alpha is compatible with the trimeric quaternary architecture of its mammalian counterparts. SbTNF-alpha is constitutively expressed in several unstimulated tissues, and was not up-regulated in the spleen and head-kidney, in response to UV-killed Photobacterium damselae subsp. piscicida. However, an increase of sbTNF-alpha expression was detected in the head-kidney during an experimental infection using the same pathogen.


Assuntos
Bass/genética , Bass/metabolismo , Regulação da Expressão Gênica , Fator de Necrose Tumoral alfa/genética , Animais , Bass/microbiologia , Clonagem Molecular , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Interleucina-1beta/genética , Modelos Moleculares , Dados de Sequência Molecular , Photobacterium/fisiologia , Filogenia , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Fator de Necrose Tumoral alfa/química
7.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 5): 512-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16627944

RESUMO

Systemic deposition of transthyretin (TTR) amyloid fibrils is always observed in familial amyloidotic polyneuropathy, senile systemic amyloidosis and familial amyloidotic cardiomyopathy patients. Destabilization of the molecule leads to a cascade of events which result in fibril formation. The destabilization of a native protein with consequent conformational changes appears to be a common link in several human amyloid diseases. Intensive research has been directed towards finding small molecules that could work as therapeutic agents for the prevention/inhibition of amyloid diseases through stabilization of the native fold of the potentially amyloidogenic protein. This work provides insight into the structural determinants of the highly stabilizing effects of 2,4-dinitrophenol on wild-type TTR. It is also shown that similar interactions are established between this molecule and two highly amyloidogenic TTR variants: TTR L55P and TTR Y78F. In the three crystal complexes, 2,4-dinitrophenol occupies the two hormone-binding sites of the TTR tetramer. As a result of 2,4-dinitrophenol binding, the two dimers in the TTR tetramer become closer, increasing the stability of the protein. The three-dimensional structures now determined allow a comprehensive description of key interactions between transthyretin and 2,4-dinitrophenol, a small compound that holds promise as a template for the design of a therapeutical drug for amyloid diseases.


Assuntos
2,4-Dinitrofenol/química , Amiloidose/genética , Modelos Moleculares , Pré-Albumina/química , Substituição de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Peptídeos , Pré-Albumina/genética
8.
J Biol Chem ; 279(51): 53483-90, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15469931

RESUMO

Transthyretin (TTR) is a homotetrameric plasma protein that, in conditions not yet completely understood, may aggregate, forming the fibrillar material associated with TTR amyloidosis. A number of reported experiments indicate that dissociation of the TTR tetramer occurs prior to fibril formation, and therefore, studies aiming at the discovery of compounds that stabilize the protein quaternary structure, thereby acting as amyloid inhibitors, are being performed. The ability of diethylstilbestrol (DES) to act as a competitive inhibitor for the thyroid hormone binding to TTR indicated a possible stabilizing effect of DES upon binding. Here we report the crystallographic study of DES binding to TTR. The structural data reveal two different binding modes, both located in the thyroxine binding channel. In both cases, DES binds deeply in the channel and establishes interactions with the equivalent molecule present in the adjacent binding site. The most remarkable features of DES interaction with TTR are its hydrophobic interactions within the protein halogen binding pockets, where its ethyl groups are snugly fitted, and the hydrogen bonds established at the center of the tetramer with Ser-117. Experiments concerning amyloid formation in vitro suggest that DES is effectively an amyloid inhibitor in acid-mediated fibrillogenesis and may be used for the design of more powerful drugs. The present study gave us further insight in the molecular mechanism by which DES competes with thyroid hormone binding to TTR and highlights key interactions between DES and TTR that oppose amyloid formation.


Assuntos
Amiloide/antagonistas & inibidores , Dietilestilbestrol/química , Desenho de Fármacos , Pré-Albumina/química , Amiloide/química , Antioxidantes/química , Sítios de Ligação , Ligação Competitiva , Proteínas de Transporte/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Elétrons , Escherichia coli/metabolismo , Humanos , Ligação de Hidrogênio , Cinética , Ligantes , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Resveratrol , Estilbenos/farmacologia , Tiroxina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA