Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Brain ; 147(4): 1166-1189, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38284949

RESUMO

Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.


Assuntos
Peptídeos , Expansão das Repetições de Trinucleotídeos , Animais , Peptídeos/genética , Modelos Animais de Doenças , Transgenes
2.
Int J Biol Macromol ; 259(Pt 2): 129157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199539

RESUMO

Oral cancer incidence and mortality are increasing over time. The most common therapies for oral cancers are surgery and radiotherapy, either used alone or combined, and immunotherapy can be also an option. Although there are several therapeutic options, none of them are completely effective, and in addition, there are numerous associated side effects. To overcome these limitations, researchers have been trying to reduce these drawbacks by using drug delivery systems that carry drugs for specific delivery to cancer cells. For that purpose, RNA-coated liposomes to selectively deliver the ligands C8 (acridine orange derivative) and dexamethasone to oral cancer cells were produced, characterized, and biologically evaluated. Firstly, the RNA structure and binding interaction with ligands (C8 and dexamethasone) were evaluated by circular dichroism (CD), thermal difference spectroscopy (TDS), nuclear magnetic resonance (NMR) and fluorescence titrations. The biophysical assays evidenced the formation of an RNA hairpin and duplex structure. Moreover, steady-state and time-resolved fluorescence intensity and anisotropy experiments show that C8 forms a complex with RNA and adopts an open conformation upon RNA binding. Then, RNA-coated liposomes were characterized by dynamic light scattering, and diameters near 160 nm were observed. Time-resolved anisotropy measurements of C8 loaded in RNA-functionalized liposomes indicate the co-existence of free C8 in solution (inside the liposome) and C8 bound to RNA at the external liposome surface. The RNA-functionalized liposomes loaded with C8 or dexamethasone mediated a significant reduction in the cell viability of malignant UPCI-SCC-154 cells while maintaining viable non-malignant NHDF cells. Additionally, the liposomes were able to internalize the cells, with higher uptake by the malignant cell line. Overall, the results obtained in this work can contribute to the development of new drug delivery systems based on RNA-coated liposomes.


Assuntos
Lipossomos , Neoplasias Bucais , Humanos , Lipossomos/química , Sistemas de Liberação de Medicamentos , Linhagem Celular , Neoplasias Bucais/tratamento farmacológico , Dexametasona/farmacologia
3.
Mol Ther ; 31(5): 1275-1292, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37025062

RESUMO

Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominantly inherited ataxia worldwide. It is caused by an over-repetition of the trinucleotide CAG within the ATXN3 gene, which confers toxic properties to ataxin-3 (ATXN3) species. RNA interference technology has shown promising therapeutic outcomes but still lacks a non-invasive delivery method to the brain. Extracellular vesicles (EVs) emerged as promising delivery vehicles due to their capacity to deliver small nucleic acids, such as microRNAs (miRNAs). miRNAs were found to be enriched into EVs due to specific signal motifs designated as ExoMotifs. In this study, we aimed at investigating whether ExoMotifs would promote the packaging of artificial miRNAs into EVs to be used as non-invasive therapeutic delivery vehicles to treat MJD/SCA3. We found that miRNA-based silencing sequences, associated with ExoMotif GGAG and ribonucleoprotein A2B1 (hnRNPA2B1), retained the capacity to silence mutant ATXN3 (mutATXN3) and were 3-fold enriched into EVs. Bioengineered EVs containing the neuronal targeting peptide RVG on the surface significantly decreased mutATXN3 mRNA in primary cerebellar neurons from MJD YAC 84.2 and in a novel dual-luciferase MJD mouse model upon daily intranasal administration. Altogether, these findings indicate that bioengineered EVs carrying miRNA-based silencing sequences are a promising delivery vehicle for brain therapy.


Assuntos
Doença de Machado-Joseph , MicroRNAs , Camundongos , Animais , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , MicroRNAs/genética , Ataxina-3/genética , Interferência de RNA , Peptídeos/genética
4.
Gene Ther ; 29(12): 665-679, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316447

RESUMO

Recombinant adeno-associated virus (rAAV) has become one of the most promising gene delivery systems for both in vitro and in vivo applications. However, a key challenge is the lack of suitable imaging technologies to evaluate delivery, biodistribution and tropism of rAAVs and efficiently monitor disease amelioration promoted by AAV-based therapies at a whole-organ level with single-cell resolution. Therefore, we aimed to establish a new pipeline for the biodistribution analysis of natural and new variants of AAVs at a whole-brain level by tissue clearing and light-sheet fluorescence microscopy (LSFM). To test this platform, neonatal C57BL/6 mice were intravenously injected with rAAV9 encoding EGFP and, after sacrifice, brains were processed by standard immunohistochemistry and a recently released aqueous-based clearing procedure. This clearing technique required no dedicated equipment and rendered highly cleared brains, while simultaneously preserving endogenous fluorescence. Moreover, three-dimensional imaging by LSFM allowed the quantitative analysis of EGFP at a whole-brain level, as well as the reconstruction of Purkinje cells for the retrieval of valuable morphological information inaccessible by standard immunohistochemistry. In conclusion, the pipeline herein described takes the AAVs to a new level when coupled to LSFM, proving its worth as a bioimaging tool in tropism and gene therapy studies.


Assuntos
Encéfalo , Imageamento Tridimensional , Animais , Camundongos , Distribuição Tecidual , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Imageamento Tridimensional/métodos , Encéfalo/diagnóstico por imagem
5.
Mov Disord ; 37(2): 405-410, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713931

RESUMO

BACKGROUND: Lifestyle could influence the course of hereditary ataxias, but representative data are missing. OBJECTIVE: The objective of this study was to characterize lifestyle in spinocerebellar ataxia type 3 (SCA3) and investigate possible associations with disease parameters. METHODS: In a prospective cohort study, data on smoking, alcohol consumption, physical activity, physiotherapy, and body mass index (BMI) were collected from 243 patients with SCA3 and 119 controls and tested for associations with age of onset, disease severity, and progression. RESULTS: Compared with controls, patients with SCA3 were less active and consumed less alcohol. Less physical activity and alcohol abstinence were associated with more severe disease, but not with progression rates or age of onset. Smoking, BMI, or physiotherapy did not correlate with disease parameters. CONCLUSION: Differences in lifestyle factors of patients with SCA3 and controls as well as associations of lifestyle factors with disease severity are likely driven by the influence of symptoms on behavior. No association between lifestyle and disease progression was detected. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph , Ataxias Espinocerebelares , Humanos , Estilo de Vida , Estudos Prospectivos , Índice de Gravidade de Doença , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/epidemiologia
6.
Mol Ther ; 30(1): 370-387, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34298131

RESUMO

Machado-Joseph disease (MJD) is a fatal neurodegenerative disorder clinically characterized by prominent ataxia. It is caused by an expansion of a CAG trinucleotide in ATXN3, translating into an expanded polyglutamine (polyQ) tract in the ATXN3 protein, that becomes prone to misfolding and aggregation. The pathogenesis of the disease has been associated with the dysfunction of several cellular mechanisms, including autophagy and transcription regulation. In this study, we investigated the transcriptional modifications of the autophagy pathway in models of MJD and assessed whether modulating the levels of the affected autophagy-associated transcripts (AATs) would alleviate MJD-associated pathology. Our results show that autophagy is impaired at the transcriptional level in MJD, affecting multiple AATs, including Unc-51 like autophagy activating kinase 1 and 2 (ULK1 and ULK2), two homologs involved in autophagy induction. Reinstating ULK1/2 levels by adeno-associated virus (AAV)-mediated gene transfer significantly improved motor performance while preventing neuropathology in two in vivo models of MJD. Moreover, in vitro studies showed that the observed positive effects may be mainly attributed to ULK1 activity. This study provides strong evidence of the beneficial effect of overexpression of ULK homologs, suggesting these as promising instruments for the treatment of MJD and other neurodegenerative disorders.


Assuntos
Doença de Machado-Joseph , Animais , Ataxina-3/genética , Ataxina-3/metabolismo , Autofagia , Dependovirus/metabolismo , Modelos Animais de Doenças , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/terapia , Camundongos
7.
Nucleic Acid Ther ; 32(3): 194-205, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34878314

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by the expansion of a CAG repeat in the ATXN3 gene. This mutation leads to a toxic gain of function of the ataxin-3 protein, resulting in neuronal dysfunction and atrophy of specific brain regions over time. As ataxin-3 is a dispensable protein in rodents, ataxin-3 knockdown by gene therapy may be a powerful approach for the treatment of SCA3. In this study, we tested the feasibility of an adeno-associated viral (AAV) vector carrying a previously described artificial microRNA against ATXN3 in a striatal mouse model of SCA3. Striatal injection of the AAV resulted in good distribution throughout the striatum, with strong dose-dependent ataxin-3 knockdown. The hallmark intracellular ataxin-3 inclusions were almost completely alleviated by the microRNA-induced ATXN3 knockdown. In addition, the striatal lesion of dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) in the SCA3 mice was rescued by ATXN3 knockdown, indicating functional rescue of neuronal signaling and health upon AAV treatment. Together, these data suggest that microRNA-induced ataxin-3 knockdown is a promising therapeutic strategy in the treatment of SCA3.


Assuntos
Ataxina-3 , Doença de Machado-Joseph , MicroRNAs , Animais , Ataxina-3/genética , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Doença de Machado-Joseph/terapia , Camundongos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Proteínas Repressoras/genética , Repetições de Trinucleotídeos
8.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34830171

RESUMO

Recent research demonstrated pathological spreading of the disease-causing proteins from one focal point across other brain regions for some neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. Spreading mediated by extracellular vesicles is one of the proposed disease-spreading mechanisms. Extracellular vesicles are cell membrane-derived vesicles, used by cells for cell-to-cell communication and excretion of toxic components. Importantly, extracellular vesicles carrying pathological molecules, when internalized by "healthy" cells, may trigger pathological pathways and, consequently, promote disease spreading to neighboring cells. Polyglutamine diseases are a group of genetic neurodegenerative disorders characterized by the accumulation of mutant misfolded proteins carrying an expanded tract of glutamines, including Huntington's and Machado-Joseph disease. The pathological spread of the misfolded proteins or the corresponding mutant mRNA has been explored. The understanding of the disease-spreading mechanism that plays a key role in the pathology progression of these diseases can result in the development of effective therapeutic approaches to stop disease progression, arresting the spread of the toxic components and disease aggravation. Therefore, the present review's main focus is the disease-spreading mechanisms with emphasis on polyglutamine diseases and the putative role played by extracellular vesicles in this process.


Assuntos
Vesículas Extracelulares , Doença de Huntington , Doença de Machado-Joseph , Animais , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Peptídeos/genética , Peptídeos/metabolismo
9.
Pharmaceutics ; 13(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34683891

RESUMO

A major bottleneck in the successful development of central nervous system (CNS) drugs is the discovery and design of molecules that can cross the blood-brain barrier (BBB). Nano-delivery strategies are a promising approach that take advantage of natural portals of entry into the brain such as monoclonal antibodies (mAbs) targeting endogenous BBB receptors. However, the main selected mAbs rely on targeting broadly expressed receptors, such as the transferrin and insulin receptors, and in selection processes that do not fully mimic the native receptor conformation, leading to mistargeting and a low fraction of the administered dose effectively reaching the brain. Thus, there is an urgent need to identify new BBB receptors and explore novel antibody selection approaches that can allow a more selective delivery into the brain. Considering that in vitro models fail to completely mimic brain structure complexity, we explored an in vivo cell immunization approach to construct a rabbit derived single-domain antibody (sdAb) library towards BBB endothelial cell receptors. The sdAb antibody library was used in an in vivo phage display screening as a functional selection of novel BBB targeting antibodies. Following three rounds of selections, next generation sequencing analysis, in vitro brain endothelial barrier (BEB) model screenings and in vivo biodistribution studies, five potential sdAbs were identified, three of which reaching >0.6% ID/g in the brain. To validate the brain drug delivery proof-of-concept, the most promising sdAb, namely RG3, was conjugated at the surface of liposomes encapsulated with a model drug, the pan-histone deacetylase inhibitor panobinostat (PAN). The translocation efficiency and activity of the conjugate liposome was determined in a dual functional in vitro BEB-glioblastoma model. The RG3 conjugated PAN liposomes enabled an efficient BEB translocation and presented a potent antitumoral activity against LN229 glioblastoma cells without influencing BEB integrity. In conclusion, our in vivo screening approach allowed the selection of highly specific nano-antibody scaffolds with promising properties for brain targeting and drug delivery.

10.
Mov Disord ; 36(11): 2675-2681, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34397117

RESUMO

BACKGROUND: Spinocerebellar ataxia type 3 is a rare neurodegenerative disease caused by a CAG repeat expansion in the ataxin-3 gene. Although no curative therapy is yet available, preclinical gene-silencing approaches to reduce polyglutamine (polyQ) toxicity demonstrate promising results. In view of upcoming clinical trials, quantitative and easily accessible molecular markers are of critical importance as pharmacodynamic and particularly as target engagement markers. OBJECTIVE: We aimed at developing an ultrasensitive immunoassay to measure specifically polyQ-expanded ataxin-3 in plasma and cerebrospinal fluid (CSF). METHODS: Using the novel single molecule counting ataxin-3 immunoassay, we analyzed cross-sectional and longitudinal patient biomaterials. RESULTS: Statistical analyses revealed a correlation with clinical parameters and a stability of polyQ-expanded ataxin-3 during conversion from the pre-ataxic to the ataxic phases. CONCLUSIONS: The novel immunoassay is able to quantify polyQ-expanded ataxin-3 in plasma and CSF, whereas ataxin-3 levels in plasma correlate with disease severity. Longitudinal analyses demonstrated a high stability of polyQ-expanded ataxin-3 over a short period. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Ataxina-3/genética , Estudos Transversais , Humanos , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Peptídeos
11.
Front Cell Neurosci ; 14: 584277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132851

RESUMO

Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by the expansion of the cytosine-adenine-guanine (CAG) repeat. This mutation encodes extended glutamine (Q) tract in the disease protein, resulting in the alteration of its conformation/physiological role and in the formation of toxic fragments/aggregates of the protein. This group of heterogeneous disorders shares common molecular mechanisms, which opens the possibility to develop a pan therapeutic approach. Vast efforts have been made to develop strategies to alleviate disease symptoms. Nonetheless, there is still no therapy that can cure or effectively delay disease progression of any of these disorders. Mesenchymal stromal cells (MSC) are promising tools for the treatment of polyQ disorders, promoting protection, tissue regeneration, and/or modulation of the immune system in animal models. Accordingly, data collected from clinical trials have so far demonstrated that transplantation of MSC is safe and delays the progression of some polyQ disorders for some time. However, to achieve sustained phenotypic amelioration in clinics, several treatments may be necessary. Therefore, efforts to develop new strategies to improve MSC's therapeutic outcomes have been emerging. In this review article, we discuss the current treatments and strategies used to reduce polyQ symptoms and major pre-clinical and clinical achievements obtained with MSC transplantation as well as remaining flaws that need to be overcome. The requirement to cross the blood-brain-barrier (BBB), together with a short rate of cell engraftment in the lesioned area and low survival of MSC in a pathophysiological context upon transplantation may contribute to the transient therapeutic effects. We also review methods like pre-conditioning or genetic engineering of MSC that can be used to increase MSC survival in vivo, cellular-free approaches-i.e., MSC-conditioned medium (CM) or MSC-derived extracellular vesicles (EVs) as a way of possibly replacing the use of MSC and methods required to standardize the potential of MSC/MSC-derived products. These are fundamental questions that need to be addressed to obtain maximum MSC performance in polyQ diseases and therefore increase clinical benefits.

12.
Brain ; 143(2): 407-429, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738395

RESUMO

Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.


Assuntos
Proteína Huntingtina/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Peptídeos/genética , Animais , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doenças Neurodegenerativas/genética , Expansão das Repetições de Trinucleotídeos/genética
13.
Front Neurosci ; 13: 1194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31802998

RESUMO

Brain regenerative strategies through the transplantation of stem cells hold the potential to promote functional rescue of brain lesions caused either by trauma or neurodegenerative diseases. Most of the positive modulations fostered by stem cells are fueled by bystander effects, namely increase of neurotrophic factors levels and reduction of neuroinflammation. Nevertheless, the ultimate goal of cell therapies is to promote cell replacement. Therefore, the ability of stem cells to migrate and differentiate into neurons that later become integrated into the host neuronal network replacing the lost neurons has also been largely explored. However, as most of the preclinical studies demonstrate, there is a small functional integration of graft-derived neurons into host neuronal circuits. Thus, it is mandatory to better study the whole brain cell therapy approach in order to understand what should be better comprehended concerning graft-derived neuronal and glial cells migration and integration before we can expect these therapies to be ready as a viable solution for brain disorder treatment. Therefore, this review discusses the positive mechanisms triggered by cell transplantation into the brain, the limitations of adult brain plasticity that might interfere with the neuroregeneration process, as well as some strategies tested to overcome some of these limitations. It also considers the efforts that have been made by the regulatory authorities to lead to better standardization of preclinical and clinical studies in this field in order to reduce the heterogeneity of the obtained results.

14.
Hum Mol Genet ; 28(22): 3691-3703, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31127937

RESUMO

Machado-Joseph disease or spinocerebellar ataxia type 3 is an inherited neurodegenerative disease associated with an abnormal glutamine over-repetition within the ataxin-3 protein. This mutant ataxin-3 protein affects several cellular pathways, leading to neuroinflammation and neuronal death in specific brain regions resulting in severe clinical manifestations. Presently, there is no therapy able to modify the disease progression. Nevertheless, anti-inflammatory pharmacological intervention has been associated with positive outcomes in other neurodegenerative diseases. Thus, the present work aimed at investigating whether ibuprofen treatment would alleviate Machado-Joseph disease. We found that ibuprofen-treated mouse models presented a significant reduction in the neuroinflammation markers, namely Il1b and TNFa mRNA and IKB-α protein phosphorylation levels. Moreover, these mice exhibited neuronal preservation, cerebellar atrophy reduction, smaller mutant ataxin-3 inclusions and motor performance improvement. Additionally, neural cultures of Machado-Joseph disease patients' induced pluripotent stem cells-derived neural stem cells incubated with ibuprofen showed increased levels of neural progenitors proliferation and synaptic markers such as MSI1, NOTCH1 and SYP. These findings were further confirmed in ibuprofen-treated mice that display increased neural progenitor numbers (Ki67 positive) in the subventricular zone. Furthermore, interestingly, ibuprofen treatment enhanced neurite total length and synaptic function of human neurons. Therefore, our results indicate that ibuprofen reduces neuroinflammation and induces neuroprotection, alleviating Machado-Joseph disease-associated neuropathology and motor impairments. Thus, our findings demonstrate that ibuprofen treatment has the potential to be used as a neuroprotective therapeutic approach in Machado-Joseph disease.


Assuntos
Ibuprofeno/farmacologia , Doença de Machado-Joseph/tratamento farmacológico , Sinapses/efeitos dos fármacos , Animais , Ataxina-3/metabolismo , Ataxina-3/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cerebelo/metabolismo , Modelos Animais de Doenças , Fibroblastos , Humanos , Ibuprofeno/metabolismo , Células-Tronco Pluripotentes Induzidas , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Nucleares/genética
15.
Hum Gene Ther ; 30(7): 841-854, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30760052

RESUMO

Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 is a neurodegenerative disorder caused by an abnormal repetition of a CAG codon in the MJD1 gene. This expansion translates into a long polyglutamine tract, leading to the misfolding of the mutant protein ataxin-3, which abnormally accumulates in the nucleus, thus leading to neurodegeneration in specific brain regions. No treatment able to modify the progression of the disease is available. However, it has previously been shown that specific silencing of mutant ataxin-3 by RNA interference with viral vectors is a promising therapeutic strategy for MJD. Nevertheless, reports of cytotoxic effects of this technology led to the safety profile of the previously tested lentiviral vectors encoding short hairpin (sh)RNAs (LV-shmutatx3) targeting mutant ataxin-3 upon brain injection being investigated. For this purpose, the vectors were injected in the mouse striata, and neuronal dysfunction, degeneration, gliosis, off-target effects, and saturation of the RNA interference machinery were evaluated. It was found that: (1) LV-shmutatx3 mediated stable and long-term expression of the shRNA in neurons of the mouse striatum; (2) neuronal dysfunction evaluated by darpp-32, NeuN, and cresyl violet staining, initially more pronounced, became indistinguishable from the phosphate-buffered saline group at 8 weeks and resolved within 20 weeks; (3) astrocytic activation was present, which resolved within 8 weeks; (4) microglial activity and proinflammatory cytokines release were present, which resolved and normalized within 20 weeks; and (5) there were no off-target effects or saturation of the endogenous RNA interference processing machinery in the mouse striatum. The data show that injection of lentiviral vectors encoding a shRNA targeting mutant ataxin-3 in the mouse brain induce transient dysfunctions, which resolve within 20 weeks. Importantly, long-term expression (up to 20 weeks post injection) of this shRNA (driven by H1 promoter) led to no toxic effect in vivo. This study thus constitutes an additional step in a future translation of gene silencing as a therapy for MJD.


Assuntos
Ataxina-3/genética , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Interferência de RNA , RNA Interferente Pequeno , Reparo Gênico Alvo-Dirigido , Animais , Astrócitos/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Inativação Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Masculino , Camundongos , Microglia/metabolismo , Mutação , Neurônios/metabolismo , RNA Mensageiro/genética , Reparo Gênico Alvo-Dirigido/métodos , Fatores de Tempo , Transdução Genética , Transgenes
16.
Hum Mol Genet ; 27(23): 3999-4011, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30102380

RESUMO

The human chr15q11-q13 imprinted cluster is linked to several disorders, including Prader-Willi (PWS) and Angelman (AS) syndromes. Recently, disease modeling approaches based on induced pluripotent stem cells (iPSCs) have been used to study these syndromes. A concern regarding the use of these cells for imprinted disease modeling is the numerous imprinting defects found in many iPSCs. Here, by reprogramming skin fibroblasts from a control and AS individuals, we generated several iPSC lines and addressed the stability of imprinting status across the PWS/AS domain. We focused on three important regulatory DNA elements which are all differentially methylated regions (DMRs), methylated on the maternal allele: the PWS imprinting center (PWS-IC), which is a germline DMR and the somatic NDN and MKRN3 DMRs, hierarchically controlled by PWS-IC. Normal PWS-IC methylation pattern was maintained in most iPSC lines; however, loss of maternal methylation in one out of five control iPSC lines resulted in a monoallelic to biallelic switch for many imprinted genes in this domain. Surprisingly, MKRN3 DMR was found aberrantly hypermethylated in all control and AS iPSCs, regardless of the methylation status of the PWS-IC master regulator. This suggests a loss of hierarchical control of imprinting at PWS/AS region. We confirmed these results in established iPSC lines derived using different reprogramming procedures. Overall, we show that hierarchy of imprinting control in donor cells might not apply to iPSCs, accounting for their spectrum of imprinting alterations. Such differences in imprinting regulation should be taken into consideration for the use of iPSCs in disease modeling.


Assuntos
Síndrome de Angelman/genética , Síndrome de Prader-Willi/genética , Elementos Reguladores de Transcrição/genética , Ribonucleoproteínas/genética , Proteínas Supressoras de Tumor/genética , Alelos , Síndrome de Angelman/patologia , Reprogramação Celular/genética , Cromossomos Humanos Par 15/genética , Metilação de DNA/genética , Fibroblastos/metabolismo , Impressão Genômica/genética , Células Germinativas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Prader-Willi/patologia , Regiões Promotoras Genéticas , Pele/metabolismo , Pele/patologia , Ubiquitina-Proteína Ligases
17.
Mol Ther ; 26(9): 2131-2151, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30087083

RESUMO

Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3, the most common dominant spinocerebellar ataxia (SCA) worldwide, is caused by over-repetition of a CAG repeat in the ATXN3/MJD1 gene, which translates into a polyglutamine tract within the ataxin-3 protein. There is no treatment for this fatal disorder. Despite evidence of the safety and efficacy of mesenchymal stromal cells (MSCs) in delaying SCA disease progression in exploratory clinical trials, unanticipated regression of patients to the status prior to treatment makes the investigation of causes and solutions urgent and imperative. In the present study, we compared the efficacy of a single intracranial injection with repeated systemic MSC administration in alleviating the MJD phenotype of two strongly severe genetic rodent models. We found that a single MSC transplantation only produces transient effects, whereas periodic administration promotes sustained motor behavior and neuropathology alleviation, suggesting that MSC therapies should be re-designed to get sustained beneficial results in clinical practice. Furthermore, MSC promoted neuroprotection, increased the levels of GABA and glutamate, and decreased the levels of Myo-inositol, which correlated with motor improvements, indicating that these metabolites may serve as valid neurospectroscopic biomarkers of disease and treatment. This study makes important contributions to the design of new clinical approaches for MJD and other SCAs/polyglutamine disorders.


Assuntos
Ataxina-3/metabolismo , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/terapia , Animais , Ataxina-3/genética , Ácido Glutâmico/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ácido gama-Aminobutírico/metabolismo
18.
Biochim Biophys Acta Gen Subj ; 1862(3): 403-413, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29154902

RESUMO

BACKGROUND: During the development of obesity the expansion of white adipose tissue (WAT) leads to a dysregulation and an excessive remodeling of extracellular matrix (ECM), leading to fibrosis formation. These ECM changes have high impact on WAT physiology and may change obesity progression. Blocking WAT fibrosis may have beneficial effects on the efficacy of diet regimen or therapeutical approaches in obesity. Since dipeptidyl peptidase IV (DPP-IV) inhibitors prevent fibrosis in tissues, such as heart, liver and kidney, the objective of this study was to assess whether vildagliptin, a DPP-IV inhibitor, prevents fibrosis in WAT in a mouse model of obesity, and to investigate the mechanisms underlying this effect. METHODS: We evaluated the inhibitory effect of vildagliptin on fibrosis markers on WAT of high-fat diet (HFD)-induced obese mice and on 3T3-L1 cell line of mouse adipocytes treated with a fibrosis inducer, transforming growth factor beta 1 (TGFß1). RESULTS: Vildagliptin prevents the increase of fibrosis markers in WAT of HFD-fed mice and reduces blood glucose, serum triglycerides, total cholesterol and leptin levels. In the in vitro study, the inhibition of DPP-IV with vildagliptin, neuropeptide Y (NPY) treatment and NPY Y1 receptor activation prevents ECM deposition and fibrosis markers increase induced by TGFß1 treatment. CONCLUSIONS: Vildagliptin prevents fibrosis formation in adipose tissue in obese mice, at least partially through NPY and NPY Y1 receptor activation. GENERAL SIGNIFICANCE: This study highlights the importance of vildagliptin in the treatment of fibrosis that occur in obesity.


Assuntos
Adamantano/análogos & derivados , Tecido Adiposo Branco/efeitos dos fármacos , Dipeptidil Peptidase 4/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipolipemiantes/uso terapêutico , Nitrilas/uso terapêutico , Obesidade/tratamento farmacológico , Pirrolidinas/uso terapêutico , Células 3T3-L1 , Adamantano/farmacologia , Adamantano/uso terapêutico , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Branco/patologia , Animais , Glicemia/análise , Colágeno/metabolismo , Dieta Hiperlipídica , Inibidores da Dipeptidil Peptidase IV/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibrose , Hipolipemiantes/farmacologia , Leptina/sangue , Leptina/fisiologia , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Neuropeptídeo Y/agonistas , Neuropeptídeo Y/farmacologia , Neuropeptídeo Y/fisiologia , Nitrilas/farmacologia , Obesidade/patologia , Pirrolidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/fisiologia , Fator de Crescimento Transformador beta1/farmacologia , Vildagliptina
19.
J Control Release ; 262: 247-258, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28687495

RESUMO

Extracellular vesicles (EVs) are cell-derived membrane vesicles virtually secreted by all cells, including brain cells. EVs are a major term that includes apoptotic bodies, microvesicles and exosomes. The release of EVs has been recognized as an important modulator in cross-talking between neurons, astrocytes, microglia and oligodendrocytes, not only in central nervous system (CNS) physiology but also in neurodegenerative and neuroinflammatory disease states as well as in brain tumors, such as glioma. EVs are able to cross the blood brain barrier (BBB), spread to body fluids and reach distant tissues. This prominent spreading ability has suggested that EVs can be exploited into several different clinical applications ranging from biomarkers to therapeutic carriers. Exosomes, the well-studied group of EVs, have been emerging as a promising tool for therapeutic delivery strategies due to their intrinsic features, such as the stability, biocompatibility and stealth capacity when circulating in bloodstream, the ability to overcome natural barriers and inherent targeting properties. Over the last years, it became apparent that EVs can be loaded with specific cargoes directly in isolated EVs or by modulation of producer cells. In addition, the engineering of its membrane for targeting purposes is expected to allow generating carriers with unprecedented abilities for delivery in specific organs or tissues. Nevertheless, some challenges remain regarding the loading and targeting of EVs for which more research is necessary, and will be discussed in this review. Recently-emerged promising derivations are also discussed, such as exosome associated with adeno-associated virus (AAV) vectors (vexosomes), enveloped protein nanocages (EPNs) and exosome-mimetic nanovesicles. This article provides an updated review of this fast-progressing field of EVs and their role in brain diseases, particularly focusing in their therapeutic applications.


Assuntos
Encefalopatias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Animais , Encéfalo/metabolismo , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico
20.
Ann Neurol ; 81(3): 407-418, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28032667

RESUMO

OBJECTIVE: Machado-Joseph disease (MJD) is a neurodegenerative spinocerebellar ataxia (SCA) associated with an expanded polyglutamine tract within ataxin-3 for which there is currently no available therapy. We previously showed that caffeine, a nonselective adenosine receptor antagonist, delays the appearance of striatal damage resulting from expression of full-length mutant ataxin-3. Here we investigated the ability of caffeine to alleviate behavioral deficits and cerebellar neuropathology in transgenic mice with a severe ataxia resulting from expression of a truncated fragment of polyglutamine-expanded ataxin-3 in Purkinje cells. METHODS: Control and transgenic c57Bl6 mice expressing in the mouse cerebella a truncated form of human ataxin-3 with 69 glutamine repeats were allowed to freely drink water or caffeinated water (1g/L). Treatments began at 7 weeks of age, when motor and ataxic phenotype emerges in MJD mice, and lasted up to 20 weeks. Mice were tested in a panel of locomotor behavioral paradigms, namely rotarod, beam balance and walking, pole, and water maze cued-platform version tests, and then sacrificed for cerebellar histology. RESULTS: Caffeine consumption attenuated the progressive loss of general and fine-tuned motor function, balance, and grip strength, in parallel with preservation of cerebellar morphology through decreasing the loss of Purkinje neurons and the thinning of the molecular layer in different folia. Caffeine also rescued the putative striatal-dependent executive and cognitive deficiencies in MJD mice. INTERPRETATION: Our findings provide the first in vivo demonstration that caffeine intake alleviates behavioral disabilities in a severely impaired animal model of SCA. Ann Neurol 2017;81:407-418.


Assuntos
Comportamento Animal , Cafeína/farmacologia , Doença de Machado-Joseph/tratamento farmacológico , Antagonistas de Receptores Purinérgicos P1/farmacologia , Animais , Ataxina-3/genética , Comportamento Animal/efeitos dos fármacos , Cafeína/administração & dosagem , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Antagonistas de Receptores Purinérgicos P1/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA