RESUMO
α1-Adrenergic Receptors (ARs) regulate the sympathetic nervous system by the binding of norepinephrine (NE) and epinephrine (Epi) through different subtypes (α1A, α1B, α1D). α1A-AR activation is hypothesized to be memory forming and cognitive enhancing but drug development has been stagnant due to unwanted side effects on blood pressure. We recently reported the pharmacological characterization of the first positive allosteric modulator (PAM) for the α1A-AR with predictive pro-cognitive and memory properties. In this report, we now demonstrate the in vivo characteristics of Compound 3 (Cmpd-3) in two genetically-different Alzheimer's Disease (AD) mouse models. Drug metabolism and pharmacokinetic studies indicate sufficient brain penetrance and rapid uptake into the brain with low to moderate clearance, and a favorable inhibition profile against the major cytochrome p450 enzymes. Oral administration of Cmpd-3 (3-9 mg/kg QD) can fully rescue long-term potentiation defects and AD biomarker profile (amyloid ß-40, 42) within 3 months of dosing to levels that were non-significant from WT controls and which outperformed donepezil (1 mg/kg QD). There were also significant effects on paired pulse facilitation and cognitive behavior. Long-term and high-dose in vivo studies with Cmpd-3 revealed no effects on blood pressure. Our results suggest that Cmpd-3 can maintain lasting therapeutic levels and efficacy with disease modifying effects with a once per day dosing regimen in AD mouse models with no observed side effects.
RESUMO
α1-Adrenergic Receptors (ARs) are G-protein Coupled Receptors (GPCRs) that regulate the sympathetic nervous system via the binding and activation of norepinephrine (NE) and epinephrine (Epi). α1-ARs control various aspects of neurotransmission, cognition, cardiovascular functions as well as other organ systems. However, therapeutic drug development for these receptors, particularly agonists, has been stagnant due to unwanted effects on blood pressure regulation. We report the synthesis and characterization of the first positive allosteric modulator (PAM) for the α1-AR based upon the derivation of the α1A-AR selective imidazoline agonist, cirazoline. Compound 3 (Cmpd-3) binds the α1A-AR with high and low affinity sites (0.13pM; 54 ânM) typical of GPCR agonists, and reverts to a single low affinity site of 100 ânM upon the addition of GTP. Comparison of Cmpd-3 versus other orthosteric α1A-AR-selective imidazoline ligands reveal unique properties that are consistent with a type I PAM. Cmpd-3 is both conformationally and ligand-selective for the α1A-AR subtype. In competition binding studies, Cmpd-3 potentiates NE-binding at the α1A-AR only on the high affinity state of NE with no effect on the Epi-bound α1A-AR. Moreover, Cmpd-3 demonstrates signaling-bias and potentiates the NE-mediated cAMP response of the α1A-AR at nM concentrations with no effects on the NE-mediated inositol phosphate response. There are no effects of Cmpd-3 on the signaling at the α1B- or α1D-AR subtypes. Cmpd-3 displays characteristics of a pure PAM with no intrinsic agonist properties. Specific derivation of Cmpd-3 at the R1 ortho-position recapitulated PAM characteristics. Our results characterize the first PAM for the α1-AR and holds promise for a first-in-class therapeutic to treat various diseases without the side effect of increasing blood pressure intrinsic to classical orthosteric agonists.
RESUMO
The α1-adrenergic receptor (α1AR) subtypes, α1AAR and α1BAR, have differential effects in the heart and central nervous system. Long-term stimulation of the α1AAR subtype prolongs lifespan and provides cardio- and neuro-protective effects. We examined the lifespan of constitutively active mutant (CAM)-α1BAR mice and the incidence of cancer in mice expressing the CAM form of either the α1AAR (CAM-α1AAR mice) or α1BAR. CAM-α1BAR mice have a significantly shortened lifespan when compared with wild-type (WT) animals; however, the effect was sex dependent. Female CAM-α1BAR mice lived significantly shorter lives, while the median lifespan of male CAM-α1BAR mice was not different when compared with that of WT animals. There was no difference in the incidence of cancer in either sex of CAM-α1BAR mice. The incidence of cancer was significantly decreased in CAM-α1AAR mice when compared with that in WT, and no sex-dependent effects were observed. Further study is warranted on cancer incidence after activation of each α1AR subtype and the effect of sex on lifespan following activation of the α1BAR. The implications of a decrease in cancer incidence following long-term α1AAR stimulation could lead to improved treatments for cancer.
Assuntos
Envelhecimento , Regulação Neoplásica da Expressão Gênica , Longevidade/fisiologia , Neoplasias Experimentais/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Feminino , Seguimentos , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/epidemiologia , Transdução de Sinais , Fatores de TempoRESUMO
Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G protein-coupled receptors in the regulation of stem cells and their potential in future clinical applications.
Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Animais , Humanos , Células-Tronco Neoplásicas/metabolismoRESUMO
The role of α1-adrenergic receptors (ARs) in the regulation of cardiac hypertrophy is still unclear, because transgenic mice demonstrated hypertrophy or the lack of it despite high receptor overexpression. To further address the role of the α1-ARs in cardiac hypertrophy, we analyzed unique transgenic mice that overexpress constitutively active mutation (CAM) α1A-ARs or CAM α1B-ARs under the regulation of large fragments of their native promoters. These constitutively active receptors are expressed in all tissues that endogenously express their wild-type counterparts as opposed to only myocyte-targeted transgenic mice. In this study, we discovered that CAM α1A-AR mice in vivo have cardiac hypertrophy independent of changes in blood pressure, corroborating earlier studies, but in contrast to myocyte-targeted α1A-AR mice. We also found cardiac hypertrophy in CAM α1B-AR mice, in agreement with previous studies, but hypertrophy only developed in older mice. We also discovered unique α1-AR-mediated hypertrophic signaling that was AR subtype-specific with CAM α1A-AR mice secreting atrial naturietic factor and interleukin-6 (IL-6), whereas CAM α1B-AR mice expressed activated nuclear factor-κB (NF-κB). These particular hypertrophic signals were blocked when the other AR subtype was coactivated. We also discovered that crossbreeding the two CAM models (double CAM α1A/B-AR) inhibited the development of hypertrophy and was reversible with single receptor activation, suggesting that coactivation of the receptors can lead to novel antagonistic signal transduction. This was confirmed by demonstrating antagonistic signals that were even lower than normal controls in the double CAM α1A/B-AR mice for p38, NF-κB, and the IL-6/glycoprotein 130/signal transducer and activator of transcription 3 pathway. Because α1A/B double knockout mice fail to develop hypertrophy in response to IL-6, our results suggest that IL-6 is a major mediator of α1A-AR cardiac hypertrophy.
Assuntos
Cardiomegalia/metabolismo , Interleucina-6/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed.
Assuntos
Células-Tronco Adultas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Adulto , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/patologia , Animais , Senescência Celular/fisiologia , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neurogênese/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Transplante de Células-TroncoRESUMO
Our previous studies have demonstrated that activation of alpha(1)-adrenergic receptors (ARs) increased interleukin-6 (IL-6) mRNA expression and protein secretion, which is probably an important yet unknown mechanism contributing to the regulation of cardiac function. Using Rat-1 fibroblasts stably transfected with the alpha(1A)-AR subtype and primary mouse neonatal cardiomyocytes, we elucidated the basic molecular mechanisms responsible for the alpha(1)-AR modulation of IL-6 expression. IL-6 mRNA production mediated by alpha(1)-AR peaked at 1 to 2 h. Studies of the mRNA decay rate indicated that alpha(1)-AR activation enhanced IL-6 mRNA stability. Analysis of IL-6 promoter activity using a series of deletion constructs indicated that alpha(1)-ARs enhanced IL-6 transcription through several transcriptional elements, including nuclear factor kappaB (NF-kappaB). Inhibition of alpha(1)-AR mediated IL-6 production and secretion by actinomycin D and the increase of intracellular IL-6 levels by alpha(1)-AR activation suggest that alpha(1)-AR mediated IL-6 secretion through de novo synthesis. Both IL-6 transcription and protein secretion mediated by alpha(1)-ARs were significantly reduced by chemical inhibitors for p38 mitogen-activated protein kinase (MAPK) and NF-kappaB and by a dominant-negative construct of p38 MAPK. Serum level of IL-6 was elevated in transgenic mice expressing a constitutively active mutant of the alpha(1A)-AR subtype but not in a similar mouse model expressing the alpha(1B)-AR subtype. Our results indicate that alpha(1)-ARs stimulated IL-6 expression and secretion through regulating both mRNA transcription and stability, involving p38 MAPK and NF-kappaB pathways.
Assuntos
Interleucina-6/genética , NF-kappa B/fisiologia , Estabilidade de RNA , Receptores Adrenérgicos alfa 1/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Interleucina-6/biossíntese , Interleucina-6/sangue , Camundongos , Miócitos Cardíacos/metabolismo , Ratos , Transcrição GênicaRESUMO
The function and distribution of alpha1-adrenergic receptor (AR) subtypes in prostate cancer cells is well characterized. Previous studies have used RNA localization or low-avidity antibodies in tissue or cell lines to determine the alpha1-AR subtype and suggested that the alpha1A-AR is dominant. Two androgen-insensitive, human metastatic cancer cell lines DU145 and PC3 were used as well as the mouse TRAMP C1-C3 primary and clonal cell lines. The density of alpha1-ARs was determined by saturation binding and the distribution of the different alpha1-AR subtypes was examined by competition-binding experiments. In contrast to previous studies, the major alpha1-AR subtype in DU145, PC3 and all of the TRAMP cell lines is the alpha1B-AR. DU145 cells contained 100% of the alpha1B-AR subtype, whereas PC3 cells were composed of 21% alpha1 A-AR and 79% alpha1B-AR. TRAMP cell lines contained between 66% and 79% of the alpha1B-AR with minor fractions of the other two subtypes. Faster doubling time in the TRAMP cell lines correlated with decreasing alpha 1B-AR and increasing alpha1 A- and alpha1D-AR densities. Transfection with EGFP-tagged alpha1B-ARs revealed that localization was mainly intracellular, but the majority of the receptors translocated to the cell surface after extended preincubation (18 hr) with either agonist or antagonist. Localization was confirmed by ligand-binding studies and inositol phosphate assays where prolonged preincubation with either agonist and/or antagonist increased the density and function of alpha 1-ARs, suggesting that the native receptors were mostly intracellular and nonfunctional. Our studies indicate that alpha1B-ARs are the major alpha1-AR subtype expressed in DU145, PC3, and all TRAMP cell lines, but most of the receptor is localized in intracellular compartments in a nonfunctional state, which can be rescued upon prolonged incubation with any ligand.
Assuntos
Neoplasias da Próstata/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Agonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacocinética , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Epinefrina/farmacologia , Humanos , Masculino , Camundongos , Piperazinas/farmacocinética , Ligação ProteicaRESUMO
Transactivation of EGF receptors by G protein-coupled receptors is a well-known phenomenon. This process involves the ectodomain shedding of growth factors in the EGF family by matrix metalloproteinases. However, many of these studies employ transformed and/or cultured cells that overexpress labeled growth factors. In addition, few studies have shown that EGF itself is the growth factor that is shed and is responsible for transactivation of the EGF receptor. In this study, we show that freshly isolated, nontransformed lacrimal gland acini express two of the three known alpha(1)-adrenergic receptors (ARs), namely, alpha(1B)- and alpha(1D)-ARs. Alpha(1D)-ARs mediate phenylephrine (an alpha(1)-adrenergic agonist)-induced protein secretion and activation of p42/p44 MAPK, because the alpha(1D)-AR inhibitor BMY-7378, but not the alpha(1A)-AR inhibitor 5-methylurapidil, inhibits these processes. Activation of p42/p44 MAPK occurs through transactivation of the EGF receptor, which is inhibited by the matrix metalloproteinase ADAM17 inhibitor TAPI-1. In addition, phenylephrine caused the shedding of EGF from freshly isolated acini into the buffer. Incubation of freshly isolated cells with conditioned buffer from cells treated with phenylephrine resulted in activation of the EGF receptor and p42/p44 MAPK. The EGF receptor inhibitor AG1478 and an EGF-neutralizing antibody blocked this activation of p42/p44 MAPK. We conclude that in freshly isolated lacrimal gland acini, alpha(1)-adrenergic agonists activate the alpha(1D)-AR to stimulate protein secretion and the ectodomain shedding of EGF to transactivate the EGF receptor, potentially via ADAM17, which activates p42/p44 MAPK to negatively modulate protein secretion.
Assuntos
Separação Celular/métodos , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/metabolismo , Aparelho Lacrimal/citologia , Receptores Adrenérgicos alfa 1/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1 , Antagonistas de Receptores Adrenérgicos alfa 1 , Animais , Ligação Competitiva/efeitos dos fármacos , Meios de Cultivo Condicionados , Ativação Enzimática/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Receptores ErbB/metabolismo , Masculino , Inibidores de Metaloproteinases de Matriz , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fenilefrina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/genética , Ativação Transcricional/efeitos dos fármacosRESUMO
alpha1-Adrenergic receptor (alpha1-ARs) subtypes (alpha1A, alpha1B, and alpha1D) regulate multiple signal pathways, such as phospholipase C, protein kinase C (PKC), and mitogen-activated protein kinases. We employed oligonucleotide microarray technology to explore the effects of both short- (1 h) and long-term (18 h) activation of the alpha1A-AR to enable RNA changes to occur downstream of earlier well characterized signaling pathways, promoting novel couplings. Polymerase chain reaction (PCR) studies confirmed that PKC was a critical regulator of alpha1A-AR-mediated gene expression, and secreted interleukin (IL)-6 also contributed to gene expression alterations. We next focused on two novel signaling pathways that might be mediated through alpha1A-AR stimulation because of the clustering of gene expression changes for cell adhesion/motility (syndecan-4 and tenascin-C) and hyaluronan (HA) signaling. We confirmed that alpha1-ARs induced adhesion in three cell types to vitronectin, an interaction that was also integrin-, FGF7-, and PKC-dependent. alpha1-AR activation also inhibited cell migration, which was integrin- and PKC-independent but still required secretion of FGF7. alpha1-AR activation also increased the expression and deposition of HA, a glycosaminoglycan, which displayed two distinct structures: pericellular coats and long cable structures, as well as increasing expression of the HA receptor, CD44. Long cable structures of HA can bind leukocytes, which this suggests that alpha1-ARs may be involved in proinflammatory responses. Our results indicate alpha1-ARs induce the secretion of factors that interact with the extracellular matrix to regulate cell adhesion, motility and proinflammatory responses through novel signaling pathways.
Assuntos
Receptores Adrenérgicos alfa 1/fisiologia , Transdução de Sinais/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 1 , Antagonistas Adrenérgicos alfa/farmacologia , Alcaloides , Animais , Benzofenantridinas , Western Blotting , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Interleucina-6/genética , Interleucina-6/metabolismo , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fenantridinas/farmacologia , Prazosina/farmacologia , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Receptores Adrenérgicos alfa 1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vitronectina/genética , Vitronectina/metabolismoRESUMO
Alpha(1)-Adrenergic receptors have been implicated in growth-promoting pathways. A microarray study of individual alpha(1)-adrenergic receptor subtypes (alpha(1A), alpha(1B), and alpha(1D)) expressed in Rat-1 fibroblasts revealed that epinephrine altered the transcription of several cell cycle regulatory genes in a direction consistent with the alpha(1A)- and alpha(1D)-adrenergic receptors mediating G(1)-S cell cycle arrest and the alpha(1B-)mediating cell-cycle progression. A time course indicated that in alpha(1A) cells, epinephrine stimulated a G(1)-S arrest, which began after 8 h of stimulation and maximized at 16 h, at which point was completely blocked with cycloheximide. The alpha(1B)-adrenergic receptor profile also showed unchecked cell cycle progression, even under low serum conditions and induced foci formation. The G(1)-S arrest induced by alpha(1A)- and alpha(1D)-adrenergic receptors was associated with decreased cyclin-dependent kinase-6 and cyclin E-associated kinase activities and increased expression of the cyclin-dependent kinase inhibitor p27(Kip1), all of which were blocked by prazosin. There were no differences in kinase activities and/or expression of p27(Kip1) in epinephrine alpha(1B)-AR fibroblasts, although the microarray did indicate differences in p27(Kip1) RNA levels. Cell counts proved the antimitotic effect of epinephrine in alpha(1A) and alpha(1D) cells and indicated that alpha(1B)-adrenergic receptor subtype expression was sufficient to cause proliferation of Rat-1 fibroblasts independent of agonist stimulation. Analysis in transfected PC12 cells also confirmed the alpha(1A)- and alpha(1B)-adrenergic receptor effect. The alpha(1B)-subtype native to DDT1-MF2 cells, a smooth muscle cell line, caused progression of the cell cycle. These results indicate that the alpha(1A)- and alpha(1D)-adrenergic receptors mediate G(1)-S cell-cycle arrest, whereas alpha(1B)-adrenergic receptor expression causes a cell cycle progression and may induce transformation in sensitive cell lines.
Assuntos
Fibroblastos/citologia , Fase G1/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Fase S/fisiologia , Agonistas Adrenérgicos/farmacologia , Animais , Contagem de Células , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27 , Quinases Ciclina-Dependentes/metabolismo , Epinefrina/farmacologia , Fibroblastos/fisiologia , Citometria de Fluxo , Fase G1/efeitos dos fármacos , Humanos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Células PC12 , Ratos , Receptores Adrenérgicos alfa 1/genética , Fase S/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismoRESUMO
Alpha(1)-adrenoceptor subtypes (alpha(1A)-, alpha(1B)-, alpha(1D)-) are known to couple to similar signaling pathways, although differences among the subtypes do exist. As a more sensitive assay, we used oligonucleotide microarrays to identify gene expression changes in Rat-1 fibroblasts stably expressing each individual subtype. We report the gene expressions that change by at least a factor of 2 or more. Gene expression profiles significantly changed equally among all three subtypes, despite the unequal efficacy of the inositol phosphate response. Gene expressions were clustered into cytokines/growth factors, transcription factors, enzymes, and extracellular matrix proteins. There were also a number of individual subtype-specific changes in gene expression, suggesting a link to independent pathways. In addition, all three alpha(1)-AR subtypes robustly stimulated the transcription of the prohypertrophic cytokine interleukin (IL)-6, but differentially altered members of the IL-6 signaling pathway (gp-130 and STAT3). This was confirmed by measurement of secreted IL-6, activated STAT3, and gp-130 levels. Activation of STAT3 Tyr705 phosphorylation by the alpha(1)-ARs was not through IL-6 activation but was synergistic with IL-6, suggesting direct effects. Interestingly, alpha(1B)-AR stimulation caused the dimerization-dependent phosphorylation of Tyr705 on STAT3 but did not activate the transcriptional-dependent phosphorylation of Ser727. The alpha(1B)-AR also constitutively down-regulated the protein levels of gp-130. These results suggest that the alpha(1B)-AR has differential effects on the phosphorylation status of the STAT3 pathway and may not be as prohypertrophic as the other two subtypes.
Assuntos
Antígenos CD/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interleucina-6/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Adrenérgicos alfa 1/genética , Transativadores/metabolismo , Animais , Ligação Competitiva , Northern Blotting , Células Cultivadas , Receptor gp130 de Citocina , Epinefrina/farmacologia , Fibroblastos/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Fosfatos de Inositol/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Ratos , Receptores Adrenérgicos alfa 1/classificação , Fator de Transcrição STAT3 , Serina/metabolismo , Transdução de Sinais/fisiologia , TrítioRESUMO
The regulation of cardiac and vascular function by the alpha 1B- and alpha 1D-adrenoceptors (ARs) has been assessed in two lines of transgenic mice, one over-expressing a constitutively active alpha 1B-AR mutation (alpha 1B-ARC128F) and the other an alpha 1D-AR knockout line. The advantage of using mice expressing a constitutively active alpha 1B-AR is that the receptor is tonically active, thus avoiding the use of nonselective agonists that can activate all subtypes. In hearts from animals expressing alpha 1B-ARC128F, the activities of the mitogen-activated protein kinases, extracellular signal-regulated kinase, and c-Jun N-terminal kinase were significantly elevated compared with nontransgenic control animals. Mice over-expressing the alpha 1B-ARC128F had echocardiographic evidence of contractile dysfunction and increases in chamber dimensions. In isolated-perfused hearts or left ventricular slices from alpha 1B-ARC128F-expressing animals, the ability of isoproterenol to increase contractile force or increase cAMP levels was significantly decreased. In contrast to the prominent effects on the heart, constitutive activation of the alpha 1B-AR had little effect on the ability of phenylephrine to induce vascular smooth muscle contraction in the isolated aorta. The ability of phenylephrine to stimulate coronary vasoconstriction was diminished in alpha 1D-AR knockout mice. In alpha 1D-AR knockout animals, no negative effects on cardiac contractile function were noted. These results show that the alpha1-ARs regulate distinctly different physiologic processes. The alpha 1B-AR appears to be involved in the regulation of cardiac growth and contractile function, whereas the alpha 1D-AR is coupled to smooth muscle contraction and the regulation of systemic arterial blood pressure.
Assuntos
Miocárdio/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Agonistas Adrenérgicos/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Eletrocardiografia , Coração/efeitos dos fármacos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/enzimologia , Perfusão , Fenilefrina/farmacologia , Vasoconstrição/efeitos dos fármacosRESUMO
OBJECTIVE: Cardiac hypertrophy is closely associated with the development of cardiomyopathies that lead to heart failure. The alpha(1B) adrenergic receptor (alpha(1)-AR) is an important regulator of the hypertrophic process. Cardiac hypertrophy induced by systemic overexpression of the alpha(1b)-AR in a mouse model does not progress to heart failure. We wanted to explore potential gene expression differences that characterize this type of hypertrophy that may identify genes that prevent progression to heart failure. METHODS: Transgenic and normal mice (B6CBA) representing two time points were compared; one at 2-3 months of age before disease manifests and the other at 12 months when the hypertrophy is significant. Age-matched hearts were removed, cRNA prepared and biotinylated. Aliquots of the cRNA was subjected to hybridization with Affymetrix chips representing 12,656 murine genes. Gene expression profiles were compared with normal age-matched controls as the baseline and confirmed by Northern and Western analysis. RESULTS: The non-EST genes could be grouped into five functional classifications: embryonic, proliferative, inflammatory, cardiac-related, and apoptotic. Growth response genes involved primarily Src-related receptors and signaling pathways. Transgenic hearts also had a 60% higher Src protein content. There was an inflammatory response that was verified by an increase in IgG and kappa-chained immunoglobulins by western analysis. Apoptosis may be regulated by cell cycle arrest through a p53-dependent mechanism. Cardiac gene expression was decreased for common hypertrophy-inducing proteins such as actin, collagen and GP130 pathways. CONCLUSIONS: Our results suggest a profile of gene expression in a case of atypical cardiac hypertrophy that does not progress to heart failure. Since many of these altered gene expressions have not been linked to heart failure models, our findings may provide a novel insight into the particular role that the alpha(1B)AR plays in its overall progression or regression.