Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Vaccines (Basel) ; 11(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36992223

RESUMO

Under physiological conditions, phosphatidylserine (PS) predominantly localizes to the cytosolic leaflet of the plasma membrane of cells. During apoptosis, PS is exposed on the cell surface and serves as an "eat-me" signal for macrophages to prevent releasing self-immunogenic cellular components from dying cells which could potentially lead to autoimmunity. However, increasing evidence indicates that viable cells can also expose PS on their surface. Interestingly, tumor cell-derived extracellular vesicles (EVs) externalize PS. Recent studies have proposed PS-exposing EVs as a potential biomarker for the early detection of cancer and other diseases. However, there are confounding results regarding subtypes of PS-positive EVs, and knowledge of PS exposure on the EV surface requires further elucidation. In this study, we enriched small EVs (sEVs) and medium/large EVs (m/lEVs) from conditioned media of breast cancer cells (MDA-MB-231, MDA-MB-468) and non-cancerous cells (keratinocytes, fibroblasts). Since several PS-binding molecules are available to date, we compared recombinant proteins of annexin A5 and the carboxylated glutamic acid domain of Protein S (GlaS), also specific for PS, to detect PS-exposing EVs. Firstly, PS externalization in each EV fraction was analyzed using a bead-based EV assay, which combines EV capture using microbeads and analysis of PS-exposing EVs by flow cytometry. The bulk EV assay showed higher PS externalization in m/lEVs derived from MDA-MB-468 cells but not from MDA-MB-231 cells, while higher binding of GlaS was also observed in m/lEVs from fibroblasts. Second, using single EV flow cytometry, PS externalization was also analyzed on individual sEVs and m/lEVs. Significantly higher PS externalization was detected in m/lEVs (annexin A1+) derived from cancer cells compared to m/lEVs (annexin A1+) from non-cancerous cells. These results emphasize the significance of PS-exposing m/lEVs (annexin A1+) as an undervalued EV subtype for early cancer detection and provide a better understanding of PS externalization in disease-associated EV subtypes.

2.
Adv Genet (Hoboken) ; 3(1): 2100055, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36619349

RESUMO

Cancer cells produce heterogeneous extracellular vesicles (EVs) as mediators of intercellular communication. This study focuses on a novel method to image EV subtypes and their biodistribution in vivo. A red-shifted bioluminescence resonance energy transfer (BRET) EV reporter is developed, called PalmReNL, which allows for highly sensitive EV tracking in vitro and in vivo. PalmReNL enables the authors to study the common surface molecules across EV subtypes that determine EV organotropism and their functional differences in cancer progression. Regardless of injection routes, whether retro-orbital or intraperitoneal, PalmReNL positive EVs, isolated from murine mammary carcinoma cells, localized to the lungs. The early appearance of metastatic foci in the lungs of mammary tumor-bearing mice following multiple intraperitoneal injections of the medium and large EV (m/lEV)-enriched fraction derived from mammary carcinoma cells is demonstrated. In addition, the results presented here show that tumor cell-derived m/lEVs act on distant tissues through upregulating LC3 expression within the lung.

3.
Sci Rep ; 9(1): 15525, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664153

RESUMO

Male infertility might be caused by genetic and/or environmental factors that impair spermatogenesis and epididymal sperm maturation. Here we report that heterozygous deletion of the nuclear receptor coactivator-5 (Ncoa5) gene resulted in decreased motility and progression of spermatozoa in the cauda epididymis, leading to infertility in male mice. Light microscopic and ultrastructural analysis revealed morphological defects in the spermatozoa collected from the cauda epididymis of Ncoa5+/- mice. Immunohistochemistry showed that interleukin-6 (IL-6) expression in epithelial cells of Ncoa5+/- epididymis was higher than wild type counterparts. Furthermore, heterozygous deletion of Il-6 gene in Ncoa5+/- male mice partially improved spermatozoa motility and moderately rescued infertility phenotype. Our results uncover a previously unknown physiological role of NCOA5 in the regulation of epididymal sperm maturation and suggest that NCOA5 deficiency could cause male infertility through increased IL-6 expression in epididymis.


Assuntos
Regulação da Expressão Gênica , Infertilidade Masculina , Interleucina-6/biossíntese , Coativadores de Receptor Nuclear/deficiência , Motilidade dos Espermatozoides/genética , Espermatozoides , Animais , Epididimo/metabolismo , Epididimo/patologia , Haploinsuficiência , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Interleucina-6/genética , Masculino , Camundongos , Camundongos Knockout , Coativadores de Receptor Nuclear/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patologia
4.
Mol Cancer Ther ; 18(12): 2331-2342, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31451563

RESUMO

An emerging approach for cancer treatment employs the use of extracellular vesicles, specifically exosomes and microvesicles, as delivery vehicles. We previously demonstrated that microvesicles can functionally deliver plasmid DNA to cells and showed that plasmid size and sequence, in part, determine the delivery efficiency. In this study, delivery vehicles comprised of microvesicles loaded with engineered minicircle (MC) DNA that encodes prodrug converting enzymes developed as a cancer therapy in mammary carcinoma models. We demonstrated that MCs can be loaded into shed microvesicles with greater efficiency than their parental plasmid counterparts and that microvesicle-mediated MC delivery led to significantly higher and more prolonged transgene expression in recipient cells than microvesicles loaded with the parental plasmid. Microvesicles loaded with MCs encoding a thymidine kinase (TK)/nitroreductase (NTR) fusion protein produced prolonged TK-NTR expression in mammary carcinoma cells. In vivo delivery of TK-NTR and administration of prodrugs led to the effective killing of both targeted cells and surrounding tumor cells via TK-NTR-mediated conversion of codelivered prodrugs into active cytotoxic agents. In vivo evaluation of the bystander effect in mouse models demonstrated that for effective therapy, at least 1% of tumor cells need to be delivered with TK-NTR-encoding MCs. These results suggest that MC delivery via microvesicles can mediate gene transfer to an extent that enables effective prodrug conversion and tumor cell death such that it comprises a promising approach to cancer therapy.


Assuntos
DNA/uso terapêutico , Terapia Genética/métodos , Pró-Fármacos/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Transfecção
5.
Mech Ageing Dev ; 134(1-2): 43-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23246342

RESUMO

In women as well as in mice, oocytes exhibit decreased developmental potential (oocyte quality) with advanced age. Our current data implicate alterations in the levels of oocyte ceramide and associated changes in mitochondrial function and structure as being prominent elements contributing to reduced oocyte quality. Both ROS levels and ATP content were significantly reduced in aged oocytes. The decreased in ROS levels are of intrigue because it is contrary to what has been previously reported. Lowered levels of both ROS and ATP indicate diminished mitochondrial function that was accompanied by alterations in mitochondrial structure. Interestingly, developmental potential of old oocytes was improved by microinjection of mitochondria isolated from young oocytes. Co-treatment of aged oocytes with ceramide and a cytoplasmic lipid carrier (l-carnitine) improved both mitochondrial morphology and function, and totally rescued spontaneous in vitro fragmentation. In addition, ceramide localization was altered in old oocytes possibly due to downregulation of the ceramide transport protein (CERT). However, knockdown of CERT alone was not sufficient to increase young oocyte's susceptibility to death, because the sequential manipulation of ceramide levels (its chronic decrease, followed by downregulation of CERT, and finally a ceramide spike) were all necessary to replicate the aging phenotype. These results indicate that oocyte aging is due to a multiplicity of events; and that with increasing biological age, changes in levels of both ceramide and its transport protein contribute to deterioration of oocyte mitochondrial structure and function. Hence, those changes may represent potential targets to manipulate when attempting to ameliorate aging phenotypes in germ cells.


Assuntos
Senescência Celular , Ceramidas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Carnitina/genética , Carnitina/metabolismo , Células Cultivadas , Ceramidas/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Oócitos/patologia , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio/metabolismo
6.
Stem Cells Dev ; 22(5): 735-49, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23025754

RESUMO

Approximately 12.5% of all 9,920 extant bird species in the world are threatened with extinction, and yet conservation efforts through natural breeding of captive species continue to encounter difficulties. However, sperm cryopreservation and artificial insemination offer potential benefits over natural breeding, but their applicability is still limited in nondomestic species. In this study, we aimed to exploit the potential of germ cell xenotransplantation as an alternative tool for preserving germplasm of endangered birds. The study was designed to investigate whether transfer of either spermatogonia-enriched cell fraction (SEF) or crude testicular cell fraction (CTF) from adult Japanese quails (as a model for wild species) would result in recolonization of gamma-irradiated gonads of adult recipient chickens. One month after transplantation, 75% of recipients injected with SEF and 25% of recipients injected with CTF resumed spermatogenesis. However, it took more than 3 months for 33% of the negative controls to resume marginal production of sperm. Some SEF recipients produced more spermatozoa bearing head morphology compared with donor controls. DNA analysis using quail-specific primers did not detect donor's DNA in these recipients' semen. However, 6 months after xenotransplantation, presence of quail germ cells was demonstrated by polymerase chain reaction and by immunohistochemistry in 1 rooster injected with SEF. These findings indicate that spermatogonia from adult quails were capable of colonizing immunocompetent testis of adult chickens but failed to produce sufficient sperm. Despite this limitation, the present approach represents a potential conservation tool that may be used to rescue germ cells of endangered adult male birds.


Assuntos
Galinhas , Coturnix , Espermatogênese , Espermatogônias/transplante , Espermatozoides/transplante , Testículo/citologia , Transplante Heterólogo/veterinária , Animais , Cruzamento , Galinhas/fisiologia , Coturnix/fisiologia , Espécies em Perigo de Extinção , Feminino , Inseminação Artificial , Masculino , Espermatozoides/fisiologia
7.
Biol Reprod ; 86(3): 76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22190703

RESUMO

Reproductive health of humans and animals exposed to daily irradiants from solar/cosmic particles remains largely understudied. We evaluated the sensitivities of bovine and mouse oocytes to bombardment by krypton-78 (1 Gy) or ultraviolet B (UV-B; 100 microjoules). Mouse oocytes responded to irradiation by undergoing massive activation of caspases, rapid loss of energy without cytochrome-c release, and subsequent necrotic death. In contrast, bovine oocytes became positive for annexin-V, exhibited cytochrome-c release, and displayed mild activation of caspases and downstream DNAses but with the absence of a complete cell death program; therefore, cytoplasmic fragmentation was never observed. However, massive cytoplasmic fragmentation and increased DNA damage were induced experimentally by both inhibiting RAD51 and increasing caspase 3 activity before irradiation. Microinjection of recombinant human RAD51 prior to irradiation markedly decreased both cytoplasmic fragmentation and DNA damage in both bovine and mouse oocytes. RAD51 response to damaged DNA occurred faster in bovine oocytes than in mouse oocytes. Therefore, we conclude that upon exposure to irradiation, bovine oocytes create a physiologically indeterminate state of partial cell death, attributed to rapid induction of DNA repair and low activation of caspases. The persistence of these damaged cells may represent an adaptive mechanism with potential implications for livestock productivity and long-term health risks associated with human activity in space.


Assuntos
Apoptose/efeitos da radiação , Oócitos/efeitos da radiação , Rad51 Recombinase/fisiologia , Radiação Ionizante , Animais , Anexina A5/metabolismo , Caspase 3/metabolismo , Bovinos , Células Cultivadas , Citocromos c/metabolismo , Dano ao DNA/efeitos da radiação , Feminino , Camundongos , Modelos Animais , Oócitos/citologia , Oócitos/metabolismo
8.
Diabetes ; 60(9): 2370-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21771974

RESUMO

OBJECTIVE: Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study. RESEARCH DESIGN AND METHODS: Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies. RESULTS: We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α-induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM(-/-) mice or inhibition of ASM activity by DHA prevents acellular capillary formation. CONCLUSIONS: This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy.


Assuntos
Capilares/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Vasos Retinianos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Capilares/efeitos dos fármacos , Capilares/patologia , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Ácidos Docosa-Hexaenoicos/farmacologia , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Esfingomielina Fosfodiesterase/genética
9.
J Cell Biochem ; 112(9): 2403-11, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21538476

RESUMO

Type I (T1) diabetes is an autoimmune and metabolic disease associated with bone loss. Bone formation and density are decreased in T1-diabetic mice. Correspondingly, the number of TUNEL positive, dying osteoblasts increases in bones of T1-diabetic mice. Moreover, two known mediators of osteoblast death, TNFα and ROS, are increased in T1-diabetic bone. TNFα and oxidative stress are known to activate caspase-2, a factor involved in the extrinsic apoptotic pathway. Therefore, we investigated the requirement of caspase-2 for diabetes-induced osteoblast death and bone loss. Diabetes was induced in 16-week old C57BL/6 caspase-2 deficient mice and their wild type littermates and markers of osteoblast death, bone formation and resorption, and marrow adiposity were examined. Despite its involvement in extrinsic cell death, deficiency of caspase-2 did not prevent or reduce diabetes-induced osteoblast death as evidenced by a twofold increase in TUNEL positive osteoblasts in both mouse genotypes. Similarly, deficiency of caspase-2 did not prevent T1-diabetes induced bone loss in trabecular bone (BV/TV decreased by 30 and 50%, respectively) and cortical bone (decreased cortical thickness and area with increased marrow area). Interestingly, at this age, differences in bone parameters were not seen between genotypes. However, caspase-2 deficiency attenuated diabetes-induced bone marrow adiposity and adipocyte gene expression. Taken together, our data suggest that caspase-2 deficiency may play a role in promoting marrow adiposity under stress or disease conditions, but it is not required for T1-diabetes induced bone loss.


Assuntos
Adiposidade , Medula Óssea/patologia , Caspase 2/deficiência , Diabetes Mellitus Experimental/patologia , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Animais , Apoptose , Desmineralização Patológica Óssea/etiologia , Medula Óssea/metabolismo , Caspase 2/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/patologia , Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , PPAR gama/genética , PPAR gama/metabolismo , Deleção de Sequência , Fosfatase Ácida Resistente a Tartarato , Microtomografia por Raio-X , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
10.
PLoS One ; 6(3): e17877, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21437292

RESUMO

To our knowledge, there is no report on long-term reproductive and developmental side effects in the offspring of mothers treated with a widely used chemotherapeutic drug such as doxorubicin (DXR), and neither is there information on transmission of any detrimental effects to several filial generations. Therefore, the purpose of the present paper was to examine the long-term effects of a single intraperitoneal injection of DXR on the reproductive and behavioral performance of adult female mice and their progeny. C57BL/6 female mice (generation zero; G0) were treated with either a single intraperitoneal injection of DXR (G0-DXR) or saline (G0-CON). Data were collected on multiple reproductive parameters and behavioral analysis for anxiety, despair and depression. In addition, the reproductive capacity and health of the subsequent six generations were evaluated. G0-DXR females developed despair-like behaviors; delivery complications; decreased primordial follicle pool; and early lost of reproductive capacity. Surprisingly, the DXR-induced effects in oocytes were transmitted transgenerationally; the most striking effects being observed in G4 and G6, constituting: increased rates of neonatal death; physical malformations; chromosomal abnormalities (particularly deletions on chromosome 10); and death of mothers due to delivery complications. None of these effects were seen in control females of the same generations. Long-term effects of DXR in female mice and their offspring can be attributed to genetic alterations or cell-killing events in oocytes or, presumably, to toxicosis in non-ovarian tissues. Results from the rodent model emphasize the need for retrospective and long-term prospective studies of survivors of cancer treatment and their offspring.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Hereditariedade/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Ansiedade/tratamento farmacológico , Atrofia , Comportamento Animal/efeitos dos fármacos , Deleção Cromossômica , Cromossomos de Mamíferos/genética , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Hereditariedade/genética , Hereditariedade/fisiologia , Humanos , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miométrio/efeitos dos fármacos , Miométrio/patologia , Oócitos/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/patologia , Folículo Ovariano/transplante , Ovulação/efeitos dos fármacos , Fenótipo , Reprodução/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Esfingosina/uso terapêutico , Útero/efeitos dos fármacos , Útero/patologia , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/metabolismo
11.
PLoS One ; 5(11): e14095, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21124794

RESUMO

BACKGROUND: As stem cells of the early embryo mature and differentiate into all tissues, the mitochondrial complement undergoes dramatic functional improvement. Mitochondrial activity is low to minimize generation of DNA-damaging reactive oxygen species during pre-implantation development and increases following implantation and differentiation to meet higher metabolic demands. It has recently been reported that when the stem cell type known as induced pluripotent stem cells (IPSCs) are re-differentiated for several weeks in vitro, the mitochondrial complement progressively re-acquires properties approximating input fibroblasts, suggesting that despite the observation that IPSC conversion "resets" some parameters of cellular aging such as telomere length, it may have little impact on other age-affected cellular systems such as mitochondria in IPSC-derived cells. METHODOLOGY/PRINCIPAL FINDINGS: We have examined the properties of mitochondria in two fibroblast lines, corresponding IPSCs, and fibroblasts re-derived from IPSCs using biochemical methods and electron microscopy, and found a dramatic improvement in the quality and function of the mitochondrial complement of the re-derived fibroblasts compared to input fibroblasts. This observation likely stems from two aspects of our experimental design: 1) that the input cell lines used were of advanced cellular age and contained an inefficient mitochondrial complement, and 2) the re-derived fibroblasts were produced using an extensive differentiation regimen that may more closely mimic the degree of growth and maturation found in a developing mammal. CONCLUSIONS/SIGNIFICANCE: These results - coupled with earlier data from our laboratory - suggest that IPSC conversion not only resets the "biological clock", but can also rejuvenate the energetic capacity of derived cells.


Assuntos
Diferenciação Celular/fisiologia , Fibroblastos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Mitocôndrias/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Metabolismo Energético/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Potencial da Membrana Mitocondrial/fisiologia , Microscopia Eletrônica , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura
12.
PLoS One ; 5(2): e9204, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20169201

RESUMO

BACKGROUND: Therapeutic approaches to preserve fertility in females undergoing cancer treatments are currently ineffective. This is partly due to limited knowledge of the molecular mechanisms that injured germ cells elicit to repair damage and survive or to abort repair and activate biochemical pathways leading to death. So far, we know that following spontaneously occurring or drug-induced DNA damage, the efficiency of DNA repair is a critical determinant of the cell's fate. The protein encoded by the Rad51 gene is one of several components recruited for homologous recombination-dependent DNA double-strand break repair in both somatic cells and germ cells. Recently, we showed that microinjection of recombinant Rad51 into AKR/J mouse oocytes decreased the extent of spontaneous DNA double-strand breaks, suppressed apoptosis, and restored the developmental competence in AKR/J embryos. Herein we characterized the nature of chemotherapy-induced lesions in oocytes, and the associated individual components of the DNA damage sensor and repair apparatus. For comparison, we also assessed parallel spontaneous changes in aging oocytes. METHODS: Data collected were derived from: analysis of apoptosis; immunodepletion; oocyte microinjections; immunocytochemistry; immunofluorescence; and CHIP-like assays. RESULTS: Our data show that: (i) DNA damage in oocytes can be induced by both chemotherapy and spontaneously by the aging process; (ii) oocytes possess the machinery and capability for repairing such DNA damage; (iii) Rad51 is a critical player in the repair of both chemotherapy-induced and spontaneously-sustained DNA damage; and (iv) in response to damage, oocytes exhibit an inverse functional relationship between presence of Bax and activity of Rad51. CONCLUSION/SIGNIFICANCE: Our results establish Rad51 and/or Bax as potential candidates that can be targeted for development of individualized chemotherapeutic interventions that are effective, but minimal in toxicity. The use of Rad51 and Bax modulating compounds could offer women the opportunity to maintain fully functional germ cells despite cancer treatments or aging.


Assuntos
Envelhecimento , Doxorrubicina/farmacologia , Oócitos/metabolismo , Rad51 Recombinase/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Imunoprecipitação da Cromatina , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Dano ao DNA , Reparo do DNA , Resistência a Medicamentos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Endogâmicos , Camundongos Knockout , Oócitos/citologia , Ligação Proteica , Rad51 Recombinase/genética , Especificidade da Espécie , Proteína X Associada a bcl-2/genética
13.
Proc Natl Acad Sci U S A ; 104(12): 5229-34, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17360389

RESUMO

The menopausal transition in human females, which is driven by a loss of cyclic ovarian function, occurs around age 50 and is thought to underlie the emergence of an array of health problems in aging women. Although mice do not undergo a true menopause, female mice exhibit ovarian failure long before death because of chronological age and subsequently develop many of the same age-associated health complications observed in postmenopausal women. Here we show in mice that inactivation of the proapoptotic Bax gene, which sustains ovarian lifespan into advanced age, extends fertile potential and minimizes many age-related health problems, including bone and muscle loss, excess fat deposition, alopecia, cataracts, deafness, increased anxiety, and selective attention deficit. Further, ovariectomy studies show that the health benefits gained by aged females from Bax deficiency reflect a complex interplay between ovary-dependent and -independent pathways. Importantly, and contrary to popular belief, prolongation of ovarian function into advanced age by Bax deficiency did not lead to an increase in tumor incidence. Thus, the development of methods for postponing ovarian failure at menopause may represent an attractive option for improving the quality of life in aging females.


Assuntos
Envelhecimento/fisiologia , Fertilidade/fisiologia , Proteína X Associada a bcl-2/deficiência , Animais , Comportamento Animal , Composição Corporal , Osso e Ossos/fisiologia , Cognição , Feminino , Camundongos , Camundongos Knockout , Ovariectomia , Ovário/patologia , Percepção
14.
Endocrinology ; 144(1): 69-74, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12488331

RESUMO

The industrial chemical, 4-vinylcyclohexene diepoxide (VCD), kills oocytes within immature follicles in the ovaries of mice and rats and is considered a potential occupational health hazard. It has been reported that VCD-induced follicle loss occurs via a cell death process involving elevated expression of Bax, a proapoptotic Bcl-2 family member, and increased caspase-3-like activity. We have previously shown that oocytes lacking acid sphingomyelinase (ASMase; an enzyme that generates the proapoptotic stress sensor ceramide), the aromatic hydrocarbon receptor (Ahr), Bax, or caspase-2 are resistant to apoptosis induced by other chemical toxicants. Therefore, this study was designed to investigate the functional importance of ASMase, Ahr, Bax, and caspase-2 as well as the related executioner enzyme caspase-3 to VCD-induced ovotoxicity in mice using gene knockout technology. For each gene mutant mouse line, wild-type and homozygous-null female siblings derived from heterozygous matings were given once-daily ip injections of either vehicle (sesame oil) or VCD (80 mg/kg body weight) for 15 d (three or four mice per treatment group per genotype). Ovaries were collected 24 h after the final injection and analyzed for the total number of nonatretic primordial and primary follicles remaining per ovary. No differences in the extent of primordial or primary follicle destruction resulting from VCD exposure were observed in wild-type vs. ASMase- or Ahr-deficient mice. By contrast, the extent of VCD-induced primordial follicle depletion in Bax-deficient mice (45 +/- 11%) was significantly (P < 0.05) lower than that in wild-type females (85 +/- 2%). The extent of primary follicle loss in bax-null mice exposed to VCD (3 +/- 22%) was also significantly (P < 0.05) lower than that in their wild-type sisters (86 +/- 4%). In caspase-2-deficient mice, significantly (P < 0.05) fewer oocyte-containing primary follicles were destroyed by VCD (17 +/- 19%) vs. wild-type controls (71 +/- 6%); however, no significant difference in the extent of VCD-induced primordial follicle destruction was observed in caspase-2-null vs. wild-type females. Finally, in caspase-3-deficient mice, significantly (P < 0.05) fewer oocyte-containing primary follicles were destroyed by VCD (33 +/- 3%) vs. wild-type controls (71 +/- 2%); however, no significant difference in the extent of VCD-induced primordial follicle destruction was observed in caspase-3-null vs. wild-type females. We conclude that Bax, caspase-2, and caspase-3, but not ASMase or Ahr, are functionally important in VCD-induced follicle loss. However, as a loss of Bax, caspase-2, or caspase-3 function conveyed only partial protection from the ovotoxic effects of VCD, other cell death pathways that either function independently of Bax, caspase-2, and caspase-3 or are not apoptotic in nature are also involved.


Assuntos
Caspases/fisiologia , Cicloexanos/toxicidade , Folículo Ovariano/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas/fisiologia , Animais , Apoptose/efeitos dos fármacos , Caspase 2 , Caspase 3 , Caspases/deficiência , Caspases/genética , Contagem de Células , Cicloexenos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/efeitos dos fármacos , Oócitos/enzimologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/fisiologia , Especificidade da Espécie , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/fisiologia , Proteína X Associada a bcl-2
15.
Endocrinology ; 143(2): 615-20, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11796517

RESUMO

We recently reported that a targeted disruption of the gene encoding the aromatic hydrocarbon receptor (AHR) in mice reduces fetal oocyte apoptosis, leading to a 2-fold increase in the number of primordial follicles endowed at birth. Although the identity of the natural ligand(s) for the AHR remains to be unequivocally established, these findings indicate that the level of AHR function is an important physiological determinant of how many oocytes will succumb to apoptosis during development of the fetal ovaries. Furthermore, the AHR is a well established receptor for polycyclic aromatic hydrocarbons (PAHs), a class of ubiquitous environmental chemicals known to cause the death of female germ cells in fetal life. Given the possibility that the AHR serves as a key mediator of fetal oocyte death under both physiological and pathological situations, this study was conducted to more fully examine the impact of PAH-AHR interaction on fetal ovarian germ cells. In addition, experiments were designed to begin identification of the mechanism(s) by which ligand activation of the AHR induces prenatal oocyte depletion after transplacental exposure of fetuses to PAHs in vivo. Embryonic d 13.5 murine fetal ovaries cultured in the presence of PAHs exhibited a high level of germ cell loss via apoptosis that was prevented by the selective AHR antagonist, alpha-napthoflavone (ANF). Immunohistochemical analysis revealed an accumulation of Bax protein in germ cells of fetal ovaries exposed to PAHs before the onset of apoptosis, whereas cotreatment with ANF inhibited the induction of Bax expression. The functional importance of increased Bax expression to the cytotoxic response was confirmed by findings that fetal ovarian germ cell loss caused by in utero exposure of wild-type female fetuses to PAHs was not observed in Bax-deficient female fetuses exposed in parallel. We conclude that a central role exists for the AHR in transducing the actions of PAHs in fetal ovarian germ cells, and that the proapoptotic Bcl-2 family member, Bax, is a required mediator of PAH-induced oocyte loss in female fetuses exposed to PAHs in utero.


Assuntos
Apoptose/genética , Células Germinativas/fisiologia , Ovário/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores de Hidrocarboneto Arílico/genética , Fatores de Transcrição/genética , 9,10-Dimetil-1,2-benzantraceno/farmacologia , Animais , Células Cultivadas , Feminino , Feto , Células Germinativas/efeitos dos fármacos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/efeitos dos fármacos , Ovário/citologia , Ovário/embriologia , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores de Hidrocarboneto Arílico/biossíntese , Proteína X Associada a bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA