Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 30(16): 1469-1483, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33902111

RESUMO

Duplication/triplication mutations of the SNCA locus, encoding alpha-synuclein (ASYN), and loss of function mutations in Nurr1, a nuclear receptor guiding midbrain dopaminergic neuron development, are associated with familial Parkinson's disease (PD). As we age, the expression levels of these two genes in midbrain dopaminergic neurons follow opposite directions and ASYN expression increases while the expression of Nurr1 decreases. We investigated the effect of ASYN and Nurr1 age-related expression alterations in the pathogenesis of PD by coupling Nurr1 hemizygous with ASYN(s) (heterozygote) or ASYN(d) (homozygote) transgenic mice. ASYN(d)/Nurr1+/- (2-hit) mice, contrary to the individual genetic traits, developed phenotypes consistent with dopaminergic dysfunction. Aging '2-hit' mice manifested kyphosis, severe rigid paralysis, L-DOPA responsive movement impairment and cachexia and died prematurely. Pathological abnormalities of phenotypic mice included SN neuron degeneration, extensive neuroinflammation and enhanced ASYN aggregation. Mice with two wt Nurr1 alleles [ASYN(d)/Nurr1+/+] or with reduced ASYN load [ASYN(s)/Nurr1+/-] did not develop the phenotype or pathology. Critically, we found that aging ASYN(d), in contrast to ASYN(s), mice suppress Nurr1-protein levels in a brain region-specific manner, which in addition to Nurr1 hemizygosity is necessary to instigate PD pathogenesis. Our experiments demonstrate that ASYN-dependent PD-related pathophysiology is mediated at least in part by Nurr1 down-regulation.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Doença de Parkinson , alfa-Sinucleína , Animais , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Camundongos , Camundongos Transgênicos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Cell Death Dis ; 9(11): 1122, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405116

RESUMO

Mitochondria are the prime energy source in most eukaryotic cells, but these highly dynamic organelles are also involved in a multitude of cellular events. Disruption of mitochondrial homeostasis and the subsequent mitochondrial dysfunction plays a key role in the pathophysiology of Parkinson's disease (PD). Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for neuronal survival. Here, we have studied the mitochondrial protein import system in in vitro and in vivo models of PD. Complex I inhibition, a characteristic pathological hallmark in PD, impaired mitochondrial protein import, which was associated with a downregulation of two key components of the system: translocase of the outer membrane 20 (TOM20) and translocase of the inner membrane 23 (TIM23), both in vitro and in vivo. In vitro, those changes were associated with OXPHOS protein downregulation, accumulation of aggregated proteins inside mitochondria and downregulation of mitochondrial chaperones. Most of these pathogenic changes, including mitochondrial dysfunction and dopaminergic cell death, were abrogated by TOM20 or TIM23 overexpression, in vitro. However, in vivo, while TOM20 overexpression exacerbated neurodegeneration in both substantia nigra (SN) pars compacta (pc) and striatum, overexpression of TIM23 partially protected dopaminergic neurons in the SNpc. These results highlight mitochondrial protein import dysfunction and the distinct role of two of their components in the pathogenesis of PD and suggest the need for future studies to further characterize mitochondrial protein import deficit in the context of PD.


Assuntos
Complexo I de Transporte de Elétrons/genética , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Doença de Parkinson/genética , Transtornos Parkinsonianos/genética , Receptores de Superfície Celular/genética , Animais , Linhagem Celular Tumoral , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Complexo I de Transporte de Elétrons/deficiência , Regulação da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana Transportadoras/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Neurônios/metabolismo , Neurônios/patologia , Fosforilação Oxidativa , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Agregados Proteicos , Transporte Proteico , Receptores de Superfície Celular/deficiência , Transdução de Sinais
3.
Autophagy ; 8(9): 1389-91, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22885599

RESUMO

Mutations in ATP13A2 (PARK9) cause an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia called Kufor-Rakeb Syndrome (KRS). The ATP13A2 gene encodes a transmembrane lysosomal P5-type ATPase (ATP13A2) whose physiological function in mammalian cells, and hence its potential role in Parkinson disease (PD), remains elusive. In this context, we have recently shown that KRS-linked mutations in ATP13A2 leads to several lysosomal alterations in ATP13A2 KRS patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates and diminished lysosomal-mediated clearance of autophagosomes (AP). Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells is able to restore lysosomal function and attenuate cell death. Relevant to PD, we have determined that ATP13A2 levels are decreased in dopaminergic nigral neurons from sporadic PD patients. Interestingly in these patients, the main signal of ATP13A2 is detected in the Lewy bodies. Our results unravel an instrumental role of ATP13A2 in lysosomal function and in cell viability. Altogether, our results validate ATP13A2 as a likely therapeutic target against PD degeneration.


Assuntos
Lisossomos/patologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , ATPases Translocadoras de Prótons/genética , Autofagia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Corpos de Lewy/metabolismo , Lisossomos/metabolismo , ATPases Translocadoras de Prótons/deficiência
4.
Proc Natl Acad Sci U S A ; 109(24): 9611-6, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22647602

RESUMO

Parkinson disease (PD) is a progressive neurodegenerative disorder pathologically characterized by the loss of dopaminergic neurons from the substantia nigra pars compacta and the presence, in affected brain regions, of protein inclusions named Lewy bodies (LBs). The ATP13A2 gene (locus PARK9) encodes the protein ATP13A2, a lysosomal type 5 P-type ATPase that is linked to autosomal recessive familial parkinsonism. The physiological function of ATP13A2, and hence its role in PD, remains to be elucidated. Here, we show that PD-linked mutations in ATP13A2 lead to several lysosomal alterations in ATP13A2 PD patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished lysosomal-mediated clearance of autophagosomes. Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells restores lysosomal function and attenuates cell death. Relevant to PD, ATP13A2 levels are decreased in dopaminergic nigral neurons from patients with PD, in which ATP13A2 mostly accumulates within Lewy bodies. Our results unravel an instrumental role of ATP13A2 deficiency on lysosomal function and cell viability and demonstrate the feasibility and therapeutic potential of modulating ATP13A2 levels in the context of PD.


Assuntos
Adenosina Trifosfatases/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/patologia , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Doença de Parkinson/enzimologia , Doença de Parkinson/metabolismo
5.
Hum Mol Genet ; 21(4): 874-89, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22076440

RESUMO

Genetic studies have implicated the neuronal ubiquitin C-terminal hydrolase (UCH) protein UCH-L1 in Parkinson's disease (PD) pathogenesis. Moreover, the function of UCH-L1 may be lost in the brains of PD and Alzheimer's disease patients. We have previously reported that the UCH-L1 polymorphic variant S18Y, potentially protective against PD in population studies, demonstrates specific antioxidant functions in cell culture. Albeit genetic, biochemical and neuropathological data support an association between UCH-L1, PD, synaptic degeneration and oxidative stress, the relationship between the dopaminergic system and UCH-L1 status remains obscure. In the current study, we have examined the dopaminergic system of mice lacking endogenous UCH-L1 protein (gracile axonal dystrophy mice). Our findings show that the lack of wild-type (WT) UCH-L1 does not influence to any significant degree the dopaminergic system at baseline or following injections of the neurotoxin methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, using a novel intrastriatal adenoviral injection protocol, we have found that mouse nigral neurons retrogradely transduced with S18Y UCH-L1, but not the WT protein, are significantly protected against MPTP toxicity. Overall, these data provide evidence for an antioxidant and neuroprotective effect of the S18Y variant of UCH-L1, but not of the WT protein, in the dopaminergic system, and may have implications for the pathogenesis of PD or related neurodegenerative conditions, in which oxidative stress might play a role.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fármacos Neuroprotetores , Polimorfismo Genético/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Adenoviridae/genética , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Vetores Genéticos/genética , Humanos , Intoxicação por MPTP/patologia , Intoxicação por MPTP/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/citologia , Neostriado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Ubiquitina Tiolesterase/deficiência
6.
J Neurosci ; 30(37): 12535-44, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844148

RESUMO

Mounting evidence suggests a role for autophagy dysregulation in Parkinson's disease (PD). The bulk degradation of cytoplasmic proteins (including α-synuclein) and organelles (such as mitochondria) is mediated by macroautophagy, which involves the sequestration of cytosolic components into autophagosomes (AP) and its delivery to lysosomes. Accumulation of AP occurs in postmortem brain samples from PD patients, which has been widely attributed to an induction of autophagy. However, the cause and pathogenic significance of these changes remain unknown. Here we found in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD that AP accumulation and dopaminergic cell death are preceded by a marked decrease in the amount of lysosomes within dopaminergic neurons. Lysosomal depletion was secondary to the abnormal permeabilization of lysosomal membranes induced by increased mitochondrial-derived reactive oxygen species. Lysosomal permeabilization resulted in a defective clearance and subsequent accumulation of undegraded AP and contributed directly to neurodegeneration by the ectopic release of lysosomal proteases into the cytosol. Lysosomal breakdown and AP accumulation also occurred in PD brain samples, where Lewy bodies were strongly immunoreactive for AP markers. Induction of lysosomal biogenesis by genetic or pharmacological activation of lysosomal transcription factor EB restored lysosomal levels, increased AP clearance and attenuated 1-methyl-4-phenylpyridinium-induced cell death. Similarly, the autophagy-enhancer compound rapamycin attenuated PD-related dopaminergic neurodegeneration, both in vitro and in vivo, by restoring lysosomal levels. Our results indicate that AP accumulation in PD results from defective lysosomal-mediated AP clearance secondary to lysosomal depletion. Restoration of lysosomal levels and function may thus represent a novel neuroprotective strategy in PD.


Assuntos
Autofagia/fisiologia , Lisossomos/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Idoso , Animais , Animais Recém-Nascidos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Citosol/enzimologia , Citosol/patologia , Modelos Animais de Doenças , Dopamina/fisiologia , Humanos , Lisossomos/patologia , Lisossomos/ultraestrutura , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Peptídeo Hidrolases/metabolismo , Fagossomos/metabolismo , Fagossomos/patologia , Fagossomos/ultraestrutura , Ratos , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 104(37): 14807-12, 2007 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-17766438

RESUMO

Parkinson's disease (PD) is a common neurodegenerative movement disorder. Whereas the majority of PD cases are sporadic, rare genetic defects have been linked to this prevalent movement disorder. Mutations in DJ-1 are associated with autosomal recessive early-onset PD. The exact biochemical function of DJ-1 has remained elusive. Here we report the generation of DJ-1 knockout (KO) mice by targeted deletion of exon 2 and exon 3. There is no observable degeneration of the central dopaminergic pathways, and the mice are anatomically and behaviorally similar to WT mice. Fluorescent Amplex red measurements of H(2)O(2) indicate that isolated mitochondria from young and old DJ-1 KO mice have a 2-fold increase in H(2)O(2). DJ-1 KO mice of 2-3 months of age have a 60% reduction in mitochondrial aconitase activity without compromising other mitochondrial processes. At an early age there are no differences in antioxidant enzymes, but in older mice there is an up-regulation of mitochondrial manganese superoxide dismutase and glutathione peroxidase and a 2-fold increase in mitochondrial glutathione peroxidase activity. Mutational analysis and mass spectrometry reveal that DJ-1 is an atypical peroxiredoxin-like peroxidase that scavenges H(2)O(2) through oxidation of Cys-106. In vivo there is an increase of DJ-1 oxidized at Cys-106 after 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine intoxication of WT mice. Taken together these data indicate that the DJ-1 KO mice have a deficit in scavenging mitochondrial H(2)O(2) due to the physiological function of DJ-1 as an atypical peroxiredoxin-like peroxidase.


Assuntos
Deleção de Genes , Proteínas Oncogênicas/genética , Peroxidase/genética , Peroxidases/genética , Envelhecimento/fisiologia , Animais , Cisteína/metabolismo , Análise Mutacional de DNA , Éxons , Glutationa Peroxidase/análise , Glutationa Peroxidase/metabolismo , Humanos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Espectrometria de Massas , Camundongos , Camundongos Knockout , Mitocôndrias/enzimologia , Oxirredução , Doença de Parkinson/genética , Doença de Parkinson/patologia , Peroxirredoxinas , Proteína Desglicase DJ-1 , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo
8.
Proc Natl Acad Sci U S A ; 104(19): 8161-6, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17483459

RESUMO

Dysfunction of mitochondrial complex I is associated with a wide spectrum of neurodegenerative disorders, including Parkinson's disease (PD). In rodents, inhibition of complex I leads to degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNpc), as seen in PD, through activation of mitochondria-dependent apoptotic molecular pathways. In this scenario, complex I blockade increases the soluble pool of cytochrome c in the mitochondrial intermembrane space through oxidative mechanisms, whereas activation of pro-cell death protein Bax is actually necessary to trigger neuronal death by permeabilizing the outer mitochondrial membrane and releasing cytochrome c into the cytosol. Activation of Bax after complex I inhibition relies on its transcriptional induction and translocation to the mitochondria. How complex I deficiency leads to Bax activation is currently unknown. Using gene-targeted mice, we show that the tumor suppressor p53 mediates Bax transcriptional induction after PD-related complex I blockade in vivo, but it does not participate in Bax mitochondrial translocation in this model, either by a transcription-independent mechanism or through the induction of BH3-only proteins Puma or Noxa. Instead, Bax mitochondrial translocation in this model relies mainly on the JNK-dependent activation of the BH3-only protein Bim. Targeting either Bax transcriptional induction or Bax mitochondrial translocation results in a marked attenuation of SNpc dopaminergic cell death caused by complex I inhibition. These results provide further insight into the pathogenesis of PD neurodegeneration and identify molecular targets of potential therapeutic significance for this disabling neurological illness.


Assuntos
Mitocôndrias/fisiologia , Doenças Neurodegenerativas/etiologia , Transtornos Parkinsonianos/patologia , Substância Negra/patologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Dano ao DNA , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Proteína X Associada a bcl-2/metabolismo
9.
J Biol Chem ; 280(52): 42655-42668, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-16239214

RESUMO

How genetic and environmental factors interact in Parkinson disease is poorly understood. We have now compared the patterns of vulnerability and rescue of Caenorhabditis elegans with genetic modifications of three different genetic factors implicated in Parkinson disease (PD). We observed that expressing alpha-synuclein, deleting parkin (K08E3.7), or knocking down DJ-1 (B0432.2) or parkin produces similar patterns of pharmacological vulnerability and rescue. C. elegans lines with these genetic changes were more vulnerable than nontransgenic nematodes to mitochondrial complex I inhibitors, including rotenone, fenperoximate, pyridaben, or stigmatellin. In contrast, the genetic manipulations did not increase sensitivity to paraquat, sodium azide, divalent metal ions (Fe(II) or Cu(II)), or etoposide compared with the nontransgenic nematodes. Each of the PD-related lines was also partially rescued by the antioxidant probucol, the mitochondrial complex II activator, D-beta-hydroxybutyrate, or the anti-apoptotic bile acid tauroursodeoxycholic acid. Complete protection in all lines was achieved by combining d-beta-hydroxybutyrate with tauroursodeoxycholic acid but not with probucol. These results show that diverse PD-related genetic modifications disrupt the mitochondrial function in C. elegans, and they raise the possibility that mitochondrial disruption is a pathway shared in common by many types of familial PD.


Assuntos
Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Oncogênicas/genética , Ubiquitina-Proteína Ligases/genética , alfa-Sinucleína/genética , Ácido 3-Hidroxibutírico/farmacologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Antioxidantes/farmacologia , Apoptose , Benzoatos/farmacologia , Benzotiazóis , Ácidos e Sais Biliares/metabolismo , Colagogos e Coleréticos/farmacologia , Cobre/química , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Deleção de Genes , Biblioteca Gênica , Técnicas Genéticas , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Íons , Ferro/química , Dados de Sequência Molecular , Mutagênese , Mutação , Neurônios/metabolismo , Consumo de Oxigênio , Paraquat/farmacologia , Doença de Parkinson/patologia , Polienos/farmacologia , Probucol/farmacologia , Proteína Desglicase DJ-1 , Pirazóis/farmacologia , Piridazinas/farmacologia , RNA Interferente Pequeno/metabolismo , Rotenona/farmacologia , Homologia de Sequência de Aminoácidos , Azida Sódica/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Tiazóis/farmacologia , Fatores de Tempo , Transgenes
10.
J Bioenerg Biomembr ; 36(4): 375-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15377875

RESUMO

1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a potent neurotoxin extensively used to model Parkinson's disease (PD). A cascade of deleterous events, in which mitochondria play a pivotal role, drives MPTP neurotoxicity. How mitochondria are affected by MPTP and how their defect contributes to the demise of dopaminergic neurons in this model of PD are discussed in this review.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Neurotoxinas/toxicidade , Ratos , Espécies Reativas de Oxigênio/metabolismo
11.
J Clin Invest ; 112(6): 892-901, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12975474

RESUMO

Parkinson disease (PD) is a neurodegenerative disorder characterized by a loss of the nigrostriatal dopaminergic neurons accompanied by a deficit in mitochondrial respiration. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that causes dopaminergic neurodegeneration and a mitochondrial deficit reminiscent of PD. Here we show that the infusion of the ketone body d-beta-hydroxybutyrate (DbetaHB) in mice confers partial protection against dopaminergic neurodegeneration and motor deficits induced by MPTP. These effects appear to be mediated by a complex II-dependent mechanism that leads to improved mitochondrial respiration and ATP production. Because of the safety record of ketone bodies in the treatment of epilepsy and their ability to penetrate the blood-brain barrier, DbetaHB may be a novel neuroprotective therapy for PD.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Respiração Celular/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Dopamina/metabolismo , Dopaminérgicos/metabolismo , Transporte de Elétrons/fisiologia , Complexo I de Transporte de Elétrons , Humanos , Peróxido de Hidrogênio/metabolismo , Hidroxibutirato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , NAD/metabolismo , NADH NADPH Oxirredutases/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Oxidantes/metabolismo , Oxigênio/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Neurobiol Dis ; 10(1): 28-32, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12079401

RESUMO

In the present study, we tried to clarify the potentially protective role of Bcl-x(L), an anti-apoptotic member of the Bcl-2 family of proteins, in Parkinson's disease (PD). Using in situ hybridization on human postmortem mesencephalon sections, we show that in PD patients Bcl-x(L) mRNA expression per dopaminergic neuron was almost double that of controls. We also show that, ultrastructurally, this effect may be mediated by a redistribution of Bcl-x(L) from the cytosol to the outer mitochondrial membrane.


Assuntos
Apoptose/fisiologia , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Idoso , Idoso de 80 Anos ou mais , Di-Hidroxifenilalanina/fisiologia , Humanos , Melaninas/metabolismo , Mesencéfalo/metabolismo , Mesencéfalo/ultraestrutura , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Especificidade de Órgãos , Doença de Parkinson/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/ultraestrutura , RNA Mensageiro/biossíntese , Proteína bcl-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA