Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38077044

RESUMO

PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110ß or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have short stature or SHORT syndrome, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.

2.
Nat Chem Biol ; 19(1): 18-27, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36109648

RESUMO

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) and related class II PI3K isoforms are of increasing biomedical interest because of their crucial roles in endocytic membrane dynamics, cell division and signaling, angiogenesis, and platelet morphology and function. Herein we report the development and characterization of PhosphatidylInositol Three-kinase Class twO INhibitors (PITCOINs), potent and highly selective small-molecule inhibitors of PI3KC2α catalytic activity. PITCOIN compounds exhibit strong selectivity toward PI3KC2α due to their unique mode of interaction with the ATP-binding site of the enzyme. We demonstrate that acute inhibition of PI3KC2α-mediated synthesis of phosphatidylinositol 3-phosphates by PITCOINs impairs endocytic membrane dynamics and membrane remodeling during platelet-dependent thrombus formation. PITCOINs are potent and selective cell-permeable inhibitors of PI3KC2α function with potential biomedical applications ranging from thrombosis to diabetes and cancer.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Fosfatos de Fosfatidilinositol/metabolismo
3.
Elife ; 102021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519269

RESUMO

The mTORC1 kinase complex regulates cell growth, proliferation, and survival. Because mis-regulation of DEPTOR, an endogenous mTORC1 inhibitor, is associated with some cancers, we reconstituted mTORC1 with DEPTOR to understand its function. We find that DEPTOR is a unique partial mTORC1 inhibitor that may have evolved to preserve feedback inhibition of PI3K. Counterintuitively, mTORC1 activated by RHEB or oncogenic mutation is much more potently inhibited by DEPTOR. Although DEPTOR partially inhibits mTORC1, mTORC1 prevents this inhibition by phosphorylating DEPTOR, a mutual antagonism that requires no exogenous factors. Structural analyses of the mTORC1/DEPTOR complex showed DEPTOR's PDZ domain interacting with the mTOR FAT region, and the unstructured linker preceding the PDZ binding to the mTOR FRB domain. The linker and PDZ form the minimal inhibitory unit, but the N-terminal tandem DEP domains also significantly contribute to inhibition.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli , Regulação da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Peptídeos e Proteínas de Sinalização Intracelular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Modelos Moleculares , Domínios PDZ , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes , Serina-Treonina Quinases TOR/genética
4.
Nat Commun ; 12(1): 1564, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692360

RESUMO

The lipid phosphatidylinositol-3-phosphate (PI3P) is a regulator of two fundamental but distinct cellular processes, endocytosis and autophagy, so its generation needs to be under precise temporal and spatial control. PI3P is generated by two complexes that both contain the lipid kinase VPS34: complex II on endosomes (VPS34/VPS15/Beclin 1/UVRAG), and complex I on autophagosomes (VPS34/VPS15/Beclin 1/ATG14L). The endosomal GTPase Rab5 binds complex II, but the mechanism of VPS34 activation by Rab5 has remained elusive, and no GTPase is known to bind complex I. Here we show that Rab5a-GTP recruits endocytic complex II to membranes and activates it by binding between the VPS34 C2 and VPS15 WD40 domains. Electron cryotomography of complex II on Rab5a-decorated vesicles shows that the VPS34 kinase domain is released from inhibition by VPS15 and hovers over the lipid bilayer, poised for catalysis. We also show that the GTPase Rab1a, which is known to be involved in autophagy, recruits and activates the autophagy-specific complex I, but not complex II. Both Rabs bind to the same VPS34 interface but in a manner unique for each. These findings reveal how VPS34 complexes are activated on membranes by specific Rab GTPases and how they are recruited to unique cellular locations.


Assuntos
Membrana Celular/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/química , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas rab1 de Ligação ao GTP/química , Proteínas rab1 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/química , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteína Beclina-1/química , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Endossomos/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estrutura Secundária de Proteína , Tomografia , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína VPS15 de Distribuição Vacuolar/química , Proteína VPS15 de Distribuição Vacuolar/genética , Proteína VPS15 de Distribuição Vacuolar/metabolismo , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética
5.
Science ; 366(6462): 203-210, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601764

RESUMO

The Rag guanosine triphosphatases (GTPases) recruit the master kinase mTORC1 to lysosomes to regulate cell growth and proliferation in response to amino acid availability. The nucleotide state of Rag heterodimers is critical for their association with mTORC1. Our cryo-electron microscopy structure of RagA/RagC in complex with mTORC1 shows the details of RagA/RagC binding to the RAPTOR subunit of mTORC1 and explains why only the RagAGTP/RagCGDP nucleotide state binds mTORC1. Previous kinetic studies suggested that GTP binding to one Rag locks the heterodimer to prevent GTP binding to the other. Our crystal structures and dynamics of RagA/RagC show the mechanism for this locking and explain how oncogenic hotspot mutations disrupt this process. In contrast to allosteric activation by RHEB, Rag heterodimer binding does not change mTORC1 conformation and activates mTORC1 by targeting it to lysosomes.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Dimerização , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Lisossomos/metabolismo , Espectrometria de Massas , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/sangue , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteína Regulatória Associada a mTOR/química , Proteínas de Saccharomyces cerevisiae/sangue , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
6.
Biochem J ; 473(2): 135-44, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26527737

RESUMO

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase, and both activities are necessary for its role as a tumour suppressor. PTEN activity is controlled by phosphorylation of its intrinsically disordered C-terminal tail. A recently discovered variant of PTEN, PTEN-long (PTEN-L), has a 173-residue N-terminal extension that causes PTEN-L to exhibit unique behaviour, such as movement from one cell to another. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and biophysical assays, we show that both the N-terminal extension of PTEN-L and C-terminal tail of PTEN affect the phosphatase activity using unique mechanisms. Phosphorylation of six residues in the C-terminal tail of PTEN results in auto-inhibitory interactions with the phosphatase and C2 domains, effectively blocking both the active site and the membrane-binding interface of PTEN. Partially dephosphorylating PTEN on pThr(366)/pSer(370) results in sufficient exposure of the active site to allow a selective activation for soluble substrates. Using HDX-MS, we identified a membrane-binding element in the N-terminal extension of PTEN-L, termed the membrane-binding helix (MBH). The MBH radically alters the membrane binding mechanism of PTEN-L compared with PTEN, switching PTEN-L to a 'scooting' mode of catalysis from the 'hopping' mode that is characteristic of PTEN.


Assuntos
Membrana Celular/genética , Membrana Celular/metabolismo , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/fisiologia , Sequência de Aminoácidos , Animais , Insetos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Spodoptera , Especificidade por Substrato/fisiologia
7.
Proc Natl Acad Sci U S A ; 110(47): 18862-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24190998

RESUMO

Phosphoinositide 3-kinase gamma (PI3Kγ) has profound roles downstream of G-protein-coupled receptors in inflammation, cardiac function, and tumor progression. To gain insight into how the enzyme's activity is shaped by association with its p101 adaptor subunit, lipid membranes, and Gßγ heterodimers, we mapped these regulatory interactions using hydrogen-deuterium exchange mass spectrometry. We identify residues in both the p110γ and p101 subunits that contribute critical interactions with Gßγ heterodimers, leading to PI3Kγ activation. Mutating Gßγ-interaction sites of either p110γ or p101 ablates G-protein-coupled receptor-mediated signaling to p110γ/p101 in cells and severely affects chemotaxis and cell transformation induced by PI3Kγ overexpression. Hydrogen-deuterium exchange mass spectrometry shows that association with the p101 regulatory subunit causes substantial protection of the RBD-C2 linker as well as the helical domain of p110γ. Lipid interaction massively exposes that same helical site, which is then stabilized by Gßγ. Membrane-elicited conformational change of the helical domain could help prepare the enzyme for Gßγ binding. Our studies and others identify the helical domain of the class I PI3Ks as a hub for diverse regulatory interactions that include the p101, p87 (also known as p84), and p85 adaptor subunits; Rab5 and Gßγ heterodimers; and the ß-adrenergic receptor kinase.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/química , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Modelos Moleculares , Fosfatidilinositol 3-Quinases/metabolismo , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Quimiotaxia , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Medição da Troca de Deutério , Ativação Enzimática , Células HEK293 , Humanos , Espectrometria de Massas , Camundongos , Microscopia Confocal , Células NIH 3T3 , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/genética , Proteínas ras/metabolismo
8.
Science ; 342(6160): 866-71, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24136356

RESUMO

Genetic mutations cause primary immunodeficiencies (PIDs) that predispose to infections. Here, we describe activated PI3K-δ syndrome (APDS), a PID associated with a dominant gain-of-function mutation in which lysine replaced glutamic acid at residue 1021 (E1021K) in the p110δ protein, the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), encoded by the PIK3CD gene. We found E1021K in 17 patients from seven unrelated families, but not among 3346 healthy subjects. APDS was characterized by recurrent respiratory infections, progressive airway damage, lymphopenia, increased circulating transitional B cells, increased immunoglobulin M, and reduced immunoglobulin G2 levels in serum and impaired vaccine responses. The E1021K mutation enhanced membrane association and kinase activity of p110δ. Patient-derived lymphocytes had increased levels of phosphatidylinositol 3,4,5-trisphosphate and phosphorylated AKT protein and were prone to activation-induced cell death. Selective p110δ inhibitors IC87114 and GS-1101 reduced the activity of the mutant enzyme in vitro, which suggested a therapeutic approach for patients with APDS.


Assuntos
Predisposição Genética para Doença , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/patologia , Fosfatidilinositol 3-Quinases/genética , Infecções Respiratórias/genética , Infecções Respiratórias/patologia , Classe I de Fosfatidilinositol 3-Quinases , Humanos , Síndromes de Imunodeficiência/imunologia , Linfócitos/imunologia , Mutação , Linhagem , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções Respiratórias/imunologia
10.
Sci Signal ; 5(253): ra89, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23211529

RESUMO

Synergistic activation by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) and receptor tyrosine kinases distinguishes p110ß from other class IA phosphoinositide 3-kinases (PI3Ks). Activation of p110ß is specifically implicated in various physiological and pathophysiological processes, such as the growth of tumors deficient in phosphatase and tensin homolog deleted from chromosome 10 (PTEN). To determine the specific contribution of GPCR signaling to p110ß-dependent functions, we identified the site in p110ß that binds to the Gßγ subunit of G proteins. Mutation of this site eliminated Gßγ-dependent activation of PI3Kß (a dimer of p110ß and the p85 regulatory subunit) in vitro and in cells, without affecting basal activity or phosphotyrosine peptide-mediated activation. Disrupting the p110ß-Gßγ interaction by mutation or with a cell-permeable peptide inhibitor blocked the transforming capacity of PI3Kß in fibroblasts and reduced the proliferation, chemotaxis, and invasiveness of PTEN-null tumor cells in culture. Our data suggest that specifically targeting GPCR signaling to PI3Kß could provide a therapeutic approach for tumors that depend on p110ß for growth and metastasis.


Assuntos
Transformação Celular Neoplásica/metabolismo , Fibroblastos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Classe I de Fosfatidilinositol 3-Quinases , Fibroblastos/patologia , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Fosfatidilinositol 3-Quinases/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética
11.
Proc Natl Acad Sci U S A ; 109(38): 15259-64, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949682

RESUMO

The p110α catalytic subunit (PIK3CA) is one of the most frequently mutated genes in cancer. We have examined the activation of the wild-type p110α/p85α and a spectrum of oncogenic mutants using hydrogen/deuterium exchange mass spectrometry (HDX-MS). We find that for the wild-type enzyme, the natural transition from an inactive cytosolic conformation to an activated form on membranes entails four distinct events. Analysis of oncogenic mutations shows that all up-regulate the enzyme by enhancing one or more of these dynamic events. We provide the first insight into the activation mechanism by mutations in the linker between the adapter-binding domain (ABD) and the Ras-binding domain (RBD) (G106V and G118D). These mutations, which are common in endometrial cancers, enhance two of the natural activation events: movement of the ABD and ABD-RBD linker relative to the rest of the catalytic subunit and breaking the C2-iSH2 interface on binding membranes. C2 domain mutants (N345K and C420R) also mimic these events, even in the absence of membranes. A third event is breaking the nSH2-helical domain contact caused by phosphotyrosine-containing peptides binding to the enzyme, which is mimicked by a helical domain mutation (E545K). Interaction of the C lobe of the kinase domain with membranes is the fourth activation event, and is potentiated by kinase domain mutations (e.g., H1047R). All mutations increased lipid binding and basal activity, even mutants distant from the membrane surface. Our results elucidate a unifying mechanism in which diverse PIK3CA mutations stimulate lipid kinase activity by facilitating allosteric motions required for catalysis on membranes.


Assuntos
Mutação , Fosfatidilinositol 3-Quinases/genética , Sítio Alostérico , Animais , Catálise , Domínio Catalítico , Classe I de Fosfatidilinositol 3-Quinases , Citosol/metabolismo , Neoplasias do Endométrio/metabolismo , Ativação Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , Lipídeos/química , Modelos Moleculares , Conformação Molecular , Movimento (Física) , Fosfatidilinositol 3-Quinases/química , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
12.
Structure ; 20(3): 414-28, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22405001

RESUMO

The endosomal sorting complexes required for transport (ESCRTs) facilitate endosomal sorting of ubiquitinated cargo, MVB biogenesis, late stages of cytokinesis, and retroviral budding. Here we show that ubiquitin associated protein 1 (UBAP1), a subunit of human ESCRT-I, coassembles in a stable 1:1:1:1 complex with Vps23/TSG101, VPS28, and VPS37. The X-ray crystal structure of the C-terminal region of UBAP1 reveals a domain that we describe as a solenoid of overlapping UBAs (SOUBA). NMR analysis shows that each of the three rigidly arranged overlapping UBAs making up the SOUBA interact with ubiquitin. We demonstrate that UBAP1-containing ESCRT-I is essential for degradation of antiviral cell-surface proteins, such as tetherin (BST-2/CD317), by viral countermeasures, namely, the HIV-1 accessory protein Vpu and the Kaposi sarcoma-associated herpesvirus (KSHV) ubiquitin ligase K5.


Assuntos
Proteínas de Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Modelos Moleculares , Ubiquitina/metabolismo , Sequência de Aminoácidos , Antígenos CD/metabolismo , Proteínas de Transporte/genética , Cromatografia em Gel , Cristalografia por Raios X , Proteínas Ligadas por GPI/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Virais Reguladoras e Acessórias/metabolismo
13.
Structure ; 19(8): 1127-37, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21827948

RESUMO

Phosphoinositide 3-kinase δ is upregulated in lymphocytic leukemias. Because the p85-regulatory subunit binds to any class IA subunit, it was assumed there is a single universal p85-mediated regulatory mechanism; however, we find isozyme-specific inhibition by p85α. Using deuterium exchange mass spectrometry (DXMS), we mapped regulatory interactions of p110δ with p85α. Both nSH2 and cSH2 domains of p85α contribute to full inhibition of p110δ, the nSH2 by contacting the helical domain and the cSH2 via the C terminus of p110δ. The cSH2 inhibits p110ß and p110δ, but not p110α, implying that p110α is uniquely poised for oncogenic mutations. Binding RTK phosphopeptides disengages the SH2 domains, resulting in exposure of the catalytic subunit. We find that phosphopeptides greatly increase the affinity of the heterodimer for PIP2-containing membranes measured by FRET. DXMS identified regions decreasing exposure at membranes and also regions gaining exposure, indicating loosening of interactions within the heterodimer at membranes.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/química , Lipídeos de Membrana/química , Fosfatidilinositol 3-Quinases/química , Substituição de Aminoácidos , Animais , Classe I de Fosfatidilinositol 3-Quinases , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Medição da Troca de Deutério , Humanos , Lipossomos/química , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores do Fator de Crescimento Derivado de Plaquetas/química , Propriedades de Superfície
14.
Mol Cell ; 41(5): 567-78, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21362552

RESUMO

Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. The structure of a p110ß/p85ß complex identifies an inhibitory function for the C-terminal SH2 domain (cSH2) of the p85 regulatory subunit. Mutagenesis of a cSH2 contact residue activates downstream signaling in cells. This inhibitory contact ties up the C-terminal region of the p110ß catalytic subunit, which is essential for lipid kinase activity. In vitro, p110ß basal activity is tightly restrained by contacts with three p85 domains: the cSH2, nSH2, and iSH2. RTK phosphopeptides relieve inhibition by nSH2 and cSH2 using completely different mechanisms. The binding site for the RTK's pYXXM motif is exposed on the cSH2, requiring an extended RTK motif to reach and disrupt the inhibitory contact with p110ß. This contrasts with the nSH2 where the pY-binding site itself forms the inhibitory contact. This establishes an unusual mechanism by which p85 SH2 domains contribute to RTK signaling specificities.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Regulação Enzimológica da Expressão Gênica , Motivos de Aminoácidos , Animais , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Insetos , Camundongos , Mutagênese , Mutação , Fosforilação , Conformação Proteica , Estrutura Terciária de Proteína , Domínios de Homologia de src
15.
Autophagy ; 6(6): 805-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20574157

RESUMO

Vps34 is the ancestral phosphatidylinositol 3-kinase (PtdIns3K) isoform and is essential for endosomal trafficking of proteins to the vacuole/lysosome, autophagy and phagocytosis. Vps34-containing complexes associate with specific cellular compartments to produce PtdIns(3)P. Understanding the roles of Vps34 has been hampered by the lack of potent, specific inhibitors. To boost development of Vps34 inhibitors, we determined the crystal structures of Vps34 alone and in complexes with multitargeted PtdIns3K inhibitors. These structures provided a first glimpse into the uniquely constricted ATP-binding site of Vps34 and enabled us to model Vps34 regulation. We showed that the substrate-binding "activation" loop and the flexibly attached amphipathic C-terminal helix are crucial for catalysis on membranes. The C-terminal helix also suppresses ATP hydrolysis in the absence of membranes. We propose that membrane binding shifts the C-terminal helix to orient the enzyme for catalysis, and the Vps15 regulatory subunit, which binds to this and the preceding helix, may facilitate this process. This C-terminal region may also represent a target for specific, non-ATP-competitive PtdIns3K inhibitors.


Assuntos
Autofagia/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fosfatidilinositol 3-Quinase/química
16.
Science ; 327(5973): 1638-42, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20339072

RESUMO

Phosphoinositide 3-kinases (PI3Ks) are lipid kinases with diverse roles in health and disease. The primordial PI3K, Vps34, is present in all eukaryotes and has essential roles in autophagy, membrane trafficking, and cell signaling. We solved the crystal structure of Vps34 at 2.9 angstrom resolution, which revealed a constricted adenine-binding pocket, suggesting the reason that specific inhibitors of this class of PI3K have proven elusive. Both the phosphoinositide-binding loop and the carboxyl-terminal helix of Vps34 mediate catalysis on membranes and suppress futile adenosine triphosphatase cycles. Vps34 appears to alternate between a closed cytosolic form and an open form on the membrane. Structures of Vps34 complexes with a series of inhibitors reveal the reason that an autophagy inhibitor preferentially inhibits Vps34 and underpin the development of new potent and specific Vps34 inhibitors.


Assuntos
Adenina/análogos & derivados , Autofagia/efeitos dos fármacos , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/química , Inibidores Enzimáticos/metabolismo , Fosfatidilinositol 3-Quinases/química , Inibidores de Fosfoinositídeo-3 Quinase , Adenina/metabolismo , Adenina/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Sítios de Ligação , Catálise , Domínio Catalítico , Membrana Celular/metabolismo , Cristalografia por Raios X , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Furanos/química , Furanos/metabolismo , Furanos/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Mutação Puntual , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacologia
17.
Nature ; 449(7163): 735-9, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17928861

RESUMO

The AAA+ ATPases are essential for various activities such as membrane trafficking, organelle biogenesis, DNA replication, intracellular locomotion, cytoskeletal remodelling, protein folding and proteolysis. The AAA ATPase Vps4, which is central to endosomal traffic to lysosomes, retroviral budding and cytokinesis, dissociates ESCRT complexes (the endosomal sorting complexes required for transport) from membranes. Here we show that, of the six ESCRT--related subunits in yeast, only Vps2 and Did2 bind the MIT (microtubule interacting and transport) domain of Vps4, and that the carboxy-terminal 30 residues of the subunits are both necessary and sufficient for interaction. We determined the crystal structure of the Vps2 C terminus in a complex with the Vps4 MIT domain, explaining the basis for selective ESCRT-III recognition. MIT helices alpha2 and alpha3 recognize a (D/E)xxLxxRLxxL(K/R) motif, and mutations within this motif cause sorting defects in yeast. Our crystal structure of the amino-terminal domain of an archaeal AAA ATPase of unknown function shows that it is closely related to the MIT domain of Vps4. The archaeal ATPase interacts with an archaeal ESCRT-III-like protein even though these organisms have no endomembrane system, suggesting that the Vps4/ESCRT-III partnership is a relic of a function that pre-dates the divergence of eukaryotes and Archaea.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Vacúolos/metabolismo
18.
Science ; 317(5835): 239-42, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17626883

RESUMO

Many human cancers involve up-regulation of the phosphoinositide 3-kinase PI3Kalpha, with oncogenic mutations identified in both the p110alpha catalytic and the p85alpha regulatory subunits. We used crystallographic and biochemical approaches to gain insight into activating mutations in two noncatalytic p110alpha domains-the adaptor-binding and the helical domains. A structure of the adaptor-binding domain of p110alpha in a complex with the p85alpha inter-Src homology 2 (inter-SH2) domain shows that oncogenic mutations in the adaptor-binding domain are not at the inter-SH2 interface but in a polar surface patch that is a plausible docking site for other domains in the holo p110/p85 complex. We also examined helical domain mutations and found that the Glu545 to Lys545 (E545K) oncogenic mutant disrupts an inhibitory charge-charge interaction with the p85 N-terminal SH2 domain. These studies extend our understanding of the architecture of PI3Ks and provide insight into how two classes of mutations that cause a gain in function can lead to cancer.


Assuntos
Domínio Catalítico , Mutação , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bovinos , Linhagem Celular , Transformação Celular Neoplásica , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/química , Inibidores de Fosfoinositídeo-3 Quinase , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Domínios de Homologia de src
19.
Cell ; 125(1): 99-111, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16615893

RESUMO

ESCRT complexes form the main machinery driving protein sorting from endosomes to lysosomes. Currently, the picture regarding assembly of ESCRTs on endosomes is incomplete. The structure of the conserved heterotrimeric ESCRT-I core presented here shows a fan-like arrangement of three helical hairpins, each corresponding to a different subunit. Vps23/Tsg101 is the central hairpin sandwiched between the other subunits, explaining the critical role of its "steadiness box" in the stability of ESCRT-I. We show that yeast ESCRT-I links directly to ESCRT-II, through a tight interaction of Vps28 (ESCRT-I) with the yeast-specific zinc-finger insertion within the GLUE domain of Vps36 (ESCRT-II). The crystal structure of the GLUE domain missing this insertion reveals it is a split PH domain, with a noncanonical lipid binding pocket that binds PtdIns3P. The simultaneous and reinforcing interactions of ESCRT-II GLUE domain with membranes, ESCRT-I, and ubiquitin are critical for ubiquitinated cargo progression from early to late endosomes.


Assuntos
Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Cromatografia em Gel , Cristalografia por Raios X , Complexos Endossomais de Distribuição Requeridos para Transporte , Lipídeos , Lipossomos/metabolismo , Lisossomos/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Vesículas Transportadoras/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/genética
20.
EMBO J ; 21(19): 5057-68, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12356722

RESUMO

p47(phox) is a key cytosolic subunit required for activation of phagocyte NADPH oxidase. The X-ray structure of the p47(phox) PX domain revealed two distinct basic pockets on the membrane-binding surface, each occupied by a sulfate. These two pockets have different specificities: one preferentially binds phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and is analogous to the phophatidylinositol 3-phosphate (PtdIns3P)-binding pocket of p40(phox), while the other binds anionic phospholipids such as phosphatidic acid (PtdOH) or phosphatidylserine. The preference of this second site for PtdOH may be related to previously observed activation of NADPH oxidase by PtdOH. Simultaneous occupancy of the two phospholipid-binding pockets radically increases membrane affinity. Strikingly, measurements for full-length p47(phox) show that membrane interaction by the PX domain is masked by an intramolecular association with the C-terminal SH3 domain (C-SH3). Either a site-specific mutation in C-SH3 (W263R) or a mimic of the phosphorylated form of p47(phox) [Ser(303, 304, 328, 359, 370)Glu] cause a transition from a closed to an open conformation that binds membranes with a greater affinity than the isolated PX domain.


Assuntos
Ácidos Fosfatídicos/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Clonagem Molecular , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Ácidos Fosfatídicos/química , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Reação em Cadeia da Polimerase , Conformação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA