Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Cancer Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810090

RESUMO

PURPOSE: The landscape of extracellular matrix (ECM) alterations in soft tissue sarcomas (STS) remains poorly characterised. We aimed to investigate the tumour ECM and adhesion signalling networks present in STS and their clinical implications. EXPERIMENTAL DESIGN: Proteomic and clinical data from 321 patients across 11 histological subtypes were analysed to define ECM and integrin adhesion networks. Subgroup analysis was performed in leiomyosarcomas (LMS), dedifferentiated liposarcomas (DDLPS) and undifferentiated pleiomorphic sarcomas (UPS). RESULTS: This analysis defined subtype-specific ECM profiles including enrichment of basement membrane proteins in LMS and ECM proteases in UPS. Across the cohort, we identified three distinct co-regulated ECM networks which are associated with tumour malignancy grade and histological subtype. Comparative analysis of LMS cell line and patient proteomic data identified the LCP1 cytoskeletal protein as a prognostic factor in LMS. Characterisation of ECM network events in DDLPS revealed three subtypes with distinct oncogenic signalling pathways and survival outcomes. Evaluation of the DDLPS subtype with the poorest prognosis nominates ECM remodelling proteins as candidate anti-stromal therapeutic targets. Finally, we define a proteoglycan signature which is an independent prognostic factor for overall survival in DDLPS and UPS. CONCLUSIONS: STS comprise heterogeneous ECM signalling networks and matrix-specific features have utility for risk stratification and therapy selection which could in future guide precision medicine in these rare cancers.

2.
Nat Commun ; 14(1): 3834, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386008

RESUMO

Soft tissue sarcomas (STS) are rare and diverse mesenchymal cancers with limited treatment options. Here we undertake comprehensive proteomic profiling of tumour specimens from 321 STS patients representing 11 histological subtypes. Within leiomyosarcomas, we identify three proteomic subtypes with distinct myogenesis and immune features, anatomical site distribution and survival outcomes. Characterisation of undifferentiated pleomorphic sarcomas and dedifferentiated liposarcomas with low infiltrating CD3 + T-lymphocyte levels nominates the complement cascade as a candidate immunotherapeutic target. Comparative analysis of proteomic and transcriptomic profiles highlights the proteomic-specific features for optimal risk stratification in angiosarcomas. Finally, we define functional signatures termed Sarcoma Proteomic Modules which transcend histological subtype classification and show that a vesicle transport protein signature is an independent prognostic factor for distant metastasis. Our study highlights the utility of proteomics for identifying molecular subgroups with implications for risk stratification and therapy selection and provides a rich resource for future sarcoma research.


Assuntos
Hemangiossarcoma , Leiomiossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Proteômica , Sarcoma/genética , Leiomiossarcoma/genética
3.
PLoS One ; 17(10): e0276420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264980

RESUMO

This study aimed to describe how video laryngoscopy is used outside the operating room within the hospital setting. Specifically, we aimed to summarise the evidence for the use of video laryngoscopy outside the operating room, and detail how it appears in current clinical practice guidelines. A literature search was conducted across two databases (MEDLINE and Embase), and all articles underwent screening for relevance to our aims and pre-determined exclusion criteria. Our results include 14 clinical practice guidelines, 12 interventional studies, 38 observational studies. Our results show that video laryngoscopy is likely to improve glottic view and decrease the incidence of oesophageal intubations; however, it remains unclear as to how this contributes to first-pass success, overall intubation success and clinical outcomes such as mortality outside the operating room. Furthermore, our results indicate that the appearance of video laryngoscopy in clinical practice guidelines has increased in recent years, and particularly through the COVID-19 pandemic. Current COVID-19 airway management guidelines unanimously introduce video laryngoscopy as a first-line (rather than rescue) device.


Assuntos
COVID-19 , Laringoscópios , Humanos , Laringoscopia/métodos , Salas Cirúrgicas , Intubação Intratraqueal/métodos , Pandemias , COVID-19/epidemiologia , COVID-19/prevenção & controle , Gravação em Vídeo
4.
Cancers (Basel) ; 14(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35740573

RESUMO

Intravenous leiomyomatosis (IVLM) is a rare benign smooth muscle tumour that is characterised by intravenous growth in the uterine and pelvic veins. Previous DNA copy number and transcriptomic studies have shown that IVLM harbors unique genomic and transcriptomic alterations when compared to uterine leiomyoma (uLM), which may account for their distinct clinical behaviour. Here we undertake the first comparative proteomic analysis of IVLM and other smooth muscle tumours (comprising uLM, soft tissue leiomyoma and benign metastasizing leiomyoma) utilising data-independent acquisition mass spectrometry. We show that, at the protein level, IVLM is defined by the unique co-regulated expression of splicing factors. In particular, IVLM is enriched in two clusters composed of co-regulated proteins from the hnRNP, LSm, SR and Sm classes of the spliceosome complex. One of these clusters (Cluster 3) is associated with key biological processes including nascent protein translocation and cell signalling by small GTPases. Taken together, our study provides evidence of co-regulated expression of splicing factors in IVLM compared to other smooth muscle tumours, which suggests a possible role for alternative splicing in the pathogenesis of IVLM.

5.
Emerg Med Australas ; 33(1): 114-124, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32959497

RESUMO

OBJECTIVE: The aim of the present study was to describe the epidemiology and clinical features of patients presenting to the ED with suspected and confirmed COVID-19. METHODS: The COVID-19 ED (COVED) Project is an ongoing prospective cohort study in Australian EDs. This analysis presents data from eight sites across Victoria and Tasmania for July 2020 (during Australia's 'second wave'). All adult patients who met criteria for 'suspected COVID-19' and underwent testing for SARS-CoV-2 in the ED were eligible for inclusion. Study outcomes included a positive SARS-CoV-2 test result and mechanical ventilation. RESULTS: In the period 1 July to 31 July 2020, there were 30 378 presentations to the participating EDs and 2917 (9.6%; 95% confidence interval 9.3-9.9) underwent testing for SARS-CoV-2. Of these, 50 (2%) patients returned a positive result. Among positive cases, two (4%) received mechanical ventilation during their hospital admission compared to 45 (2%) of the SARS-CoV-2 negative patients (odds ratio 1.7, 95% confidence interval 0.4-7.3; P = 0.47). Two (4%) SARS-CoV-2 positive patients died in hospital compared to 46 (2%) of the SARS-CoV-2 negative patients (odds ratio 1.7, 95% confidence interval 0.4-7.1; P = 0.49). Strong clinical predictors of a positive SARS-CoV-2 result included self-reported fever, non-smoking status, bilateral infiltrates on chest X-ray and absence of a leucocytosis on first ED blood tests (P < 0.05). CONCLUSION: In this prospective multi-site study from July 2020, a substantial proportion of ED patients required SARS-CoV-2 testing, isolation and enhanced infection prevention and control precautions. Presence of SARS-CoV-2 on nasopharyngeal swab was not associated with death or mechanical ventilation.


Assuntos
COVID-19/epidemiologia , Serviço Hospitalar de Emergência/estatística & dados numéricos , Melhoria de Qualidade/estatística & dados numéricos , COVID-19/diagnóstico , COVID-19/prevenção & controle , COVID-19/terapia , Teste para COVID-19/métodos , Teste para COVID-19/estatística & dados numéricos , Infecção Hospitalar/prevenção & controle , Serviço Hospitalar de Emergência/organização & administração , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Melhoria de Qualidade/organização & administração , SARS-CoV-2 , Tasmânia/epidemiologia , Vitória/epidemiologia
6.
Stem Cell Res ; 49: 102046, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096385

RESUMO

Microglia are resident tissue macrophages of the central nervous system (CNS) that arise from erythromyeloid progenitors during embryonic development. They play essential roles in CNS development, homeostasis and response to disease. Since microglia are difficult to procure from the human brain, several protocols have been developed to generate microglia-like cells from human induced pluripotent stem cells (hiPSCs). However, some concerns remain over the purity and quality of in vitro generated microglia. Here, we describe a new protocol that does not require co-culture with neural cells and yields cultures of 100% P2Y12+ 95% TMEM119+ ramified human microglia-like cells (hiPSC-MG). In the presence of neural precursor cell-conditioned media, hiPSC-MG expressed high levels of human microglia signature genes, including SALL1, CSF1R, P2RY12, TMEM119, TREM2, HEXB and SIGLEC11, as revealed by whole-transcriptome analysis. Stimulation of hiPSC-MG with lipopolysaccharide resulted in downregulation of P2Y12 expression, induction of IL1B mRNA expression and increase in cell capacitance. HiPSC-MG were phagocytically active and maintained their cell identity after transplantation into murine brain slices and human brain spheroids. Together, our new protocol for the generation of microglia-like cells from human iPSCs will facilitate the study of human microglial function in health and disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microglia , Animais , Encéfalo , Humanos , Glicoproteínas de Membrana , Camundongos , Neurônios , Receptores Imunológicos
7.
Proc Natl Acad Sci U S A ; 115(52): E12407-E12416, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530649

RESUMO

The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs. MTSS1 loss results in increased SFK activity, reduced Purkinje neuron arborization, and low basal firing rates, followed by cell death. Surprisingly, mouse models for SCA1, SCA2, and SCA5 show elevated SFK activity, with SCA1 and SCA2 displaying dramatically reduced MTSS1 protein levels through reduced gene expression and protein translation, respectively. Treatment of each SCA model with a clinically approved Src inhibitor corrects Purkinje neuron basal firing and delays ataxia progression in MTSS1 mutants. Our results identify a common SCA therapeutic target and demonstrate a key role for MTSS1/SFK in Purkinje neuron survival and ataxia progression.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Animais , Ataxia/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Proteínas/metabolismo , Células de Purkinje/fisiologia , Ataxias Espinocerebelares/metabolismo , Degenerações Espinocerebelares/metabolismo , Degenerações Espinocerebelares/fisiopatologia , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA