Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
G Ital Nefrol ; 40(Suppl 81)2023 10 03.
Artigo em Italiano | MEDLINE | ID: mdl-38007830

RESUMO

Onconephrology is a rising and rapidly expanding field of medicine in which nephrology and oncology meet each other. Besides multidisciplinary meetings, oncologists and nephrologists often discuss on timing of the treatment, dosage, and side effects management. Cancer patients often encounter different electrolyte disorders. They are mostly secondary to the tumor itself or consequences of its treatment. In the last years, the great efforts to find new therapies like targeted, immune, and cell-based led us to many new side effects. Hyponatremia, hypokalemia, hyperkalemia, hypercalcemia, and hypomagnesemia are among the most common electrolyte disorders. Data have shown a worse prognosis in patients with electrolytic imbalances. Additionally, they cause a delay in chemotherapy or even an interruption. It is important to diagnose promptly these complications and treat them. In this review, we provide a special focus on hyponatremia and its treatment as the most common electrolytes disorder in cancer patients, but also on newly described cases of hypo- and hyperkalemia and metabolic acidosis.


Assuntos
Hiperpotassemia , Hipernatremia , Hipopotassemia , Hiponatremia , Neoplasias , Desequilíbrio Hidroeletrolítico , Humanos , Hiponatremia/diagnóstico , Hiponatremia/etiologia , Hiponatremia/terapia , Hiperpotassemia/terapia , Hiperpotassemia/complicações , Hipernatremia/complicações , Desequilíbrio Hidroeletrolítico/etiologia , Neoplasias/complicações , Hipopotassemia/etiologia , Eletrólitos
2.
Sci Transl Med ; 15(720): eabn4214, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37910600

RESUMO

Glycogen storage disease XI, also known as Fanconi-Bickel syndrome (FBS), is a rare autosomal recessive disorder caused by mutations in the SLC2A2 gene that encodes the glucose-facilitated transporter type 2 (GLUT2). Patients develop a life-threatening renal proximal tubule dysfunction for which no treatment is available apart from electrolyte replacement. To investigate the renal pathogenesis of FBS, SLC2A2 expression was ablated in mouse kidney and HK-2 proximal tubule cells. GLUT2Pax8Cre+ mice developed time-dependent glycogen accumulation in proximal tubule cells and recapitulated the renal Fanconi phenotype seen in patients. In vitro suppression of GLUT2 impaired lysosomal autophagy as shown by transcriptomic and biochemical analysis. However, this effect was reversed by exposure to a low glucose concentration, suggesting that GLUT2 facilitates the homeostasis of key cellular pathways in proximal tubule cells by preventing glucose toxicity. To investigate whether targeting proximal tubule glucose influx can limit glycogen accumulation and correct symptoms in vivo, we treated mice with the selective SGLT2 inhibitor dapagliflozin. Dapagliflozin reduced glycogen accumulation and improved metabolic acidosis and phosphaturia in the animals by normalizing the expression of Napi2a and NHE3 transporters. In addition, in a patient with FBS, dapagliflozin was safe, improved serum potassium and phosphate concentrations, and reduced glycogen content in urinary shed cells. Overall, this study provides proof of concept for dapagliflozin as a potentially suitable therapy for FBS.


Assuntos
Síndrome de Fanconi , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Camundongos , Animais , Síndrome de Fanconi/genética , Síndrome de Fanconi/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Glucose , Rim/metabolismo , Glicogênio
3.
Genes (Basel) ; 14(6)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37372437

RESUMO

Chronic kidney disease (CKD) induces several systemic effects, including the accumulation and production of uremic toxins responsible for the activation of various harmful processes. Gut dysbiosis has been widely described in CKD patients, even in the early stages of the disease. The abundant discharge of urea and other waste substances into the gut favors the selection of an altered intestinal microbiota in CKD patients. The prevalence of bacteria with fermentative activity leads to the release and accumulation in the gut and in the blood of several substances, such as p-Cresol (p-C), Indoxyl Sulfate (IS) and p-Cresyl Sulfate (p-CS). Since these metabolites are normally eliminated in the urine, they tend to accumulate in the blood of CKD patients proportionally to renal impairment. P-CS, IS and p-C play a fundamental role in the activation of various pro-tumorigenic processes, such as chronic systemic inflammation, the increase in the production of free radicals and immune dysfunction. An up to two-fold increase in the incidence of colon cancer development in CKD has been reported in several studies, although the pathogenic mechanisms explaining this compelling association have not yet been described. Based on our literature review, it appears likely the hypothesis of a role of p-C, IS and p-CS in colon cancer development and progression in CKD patients.


Assuntos
Neoplasias do Colo , Falência Renal Crônica , Insuficiência Renal Crônica , Humanos , Indicã , Toxinas Urêmicas , Sulfatos , Insuficiência Renal Crônica/metabolismo , Inflamação
4.
J Pers Med ; 13(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37240983

RESUMO

Thyroid cancers require complex and heterogeneous therapies with different impacts on renal function. In our systematic literature review, we analyzed several aspects: renal function assessment, the impact of radiotherapy and thyroid surgery on kidney functioning, and mechanisms of nephrotoxicity of different chemotherapy, targeted and immunologic drugs. Our study revealed that the renal impact of thyroid cancer therapy can be a limiting factor in all radiotherapy, surgery, and pharmacological approaches. It is advisable to conduct a careful nephrological follow-up imposing the application of body surface based estimated Glomerular Filtration Rate (eGFR) formulas for the purpose of an early diagnosis and treatment of renal failure, guaranteeing the therapy continuation to thyroid cancer patients.

5.
Genes (Basel) ; 14(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36981034

RESUMO

Mutations in COL4A3-A5 cause a spectrum of glomerular disorders, including thin basement membrane nephropathy (TBMN) and Alport syndrome (AS). The wide application of next-generation sequencing (NGS) in the last few years has revealed that mutations in these genes are not limited to these clinical entities. In this study, 176 individuals with a clinical diagnosis of inherited kidney disorders underwent an NGS-based analysis to address the underlying cause; those who changed or perfected the clinical diagnosis after molecular analysis were selected. In 5 out of 83 individuals reaching a molecular diagnosis, the genetic result was unexpected: three individuals showed mutations in collagen type IV genes. These patients showed the following clinical pictures: (1) familial focal segmental glomerulosclerosis; (2) end-stage renal disease (ESRD) diagnosed incidentally in a 49-year-old man, with diffuse cortical calcifications on renal imaging; and (3) dysmorphic and asymmetric kidneys with multiple cysts and signs of tubule-interstitial defects. Genetic analysis revealed rare heterozygote/compound heterozygote COL4A4-A5 variants. Our study highlights the key role of NGS in the diagnosis of inherited renal disorders and shows the phenotype variability in patients carrying mutations in collagen type IV genes.


Assuntos
Colágeno Tipo IV , Nefrite Hereditária , Humanos , Colágeno Tipo IV/genética , Rim , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Variação Biológica da População , Sequenciamento de Nucleotídeos em Larga Escala
6.
Toxins (Basel) ; 15(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36977089

RESUMO

Impaired polymorphonuclear leukocyte (PMNL) functions contribute to increased infections and cardiovascular diseases in chronic kidney disease (CKD). Uremic toxins reduce hydrogen sulfide (H2S) levels and the anti-oxidant and anti-inflammatory effects of H2S. Its biosynthesis occurs as a side process of transsulfuration and in the disposal of adenosylhomocysteine, a transmethylation inhibitor and proposed uremic toxin. PMNL chemotaxis was measured by the under-agarose method, phagocytosis, and oxidative burst by flow cytometry in whole blood and apoptosis by determining DNA content by flow cytometry and morphological features by fluorescence microscopy. Sodium hydrogen sulfide (NaHS), diallyl trisulphide (DATS) and diallyl disulphide (DADS), cysteine, and GYY4137 were used as H2S-producing substances. Increased H2S concentrations did not affect chemotaxis and phagocytosis. NaHS primed PMNL oxidative burst activated by phorbol 12-myristate 13-acetate (PMA) or E. coli. Both DATS and cysteine significantly decreased E. coli-activated oxidative burst but had no effect on PMA stimulation. While NaHS, DADS, and cysteine attenuated PMNL apoptosis, GYY4137 decreased their viability. Experiments with signal transduction inhibitors suggest that the intrinsic apoptosis pathway is mainly involved in GYY4137-induced PMNL apoptosis and that GYY4137 and cysteine target signaling downstream of phosphoinositide 3-kinase.


Assuntos
Sulfeto de Hidrogênio , Neutrófilos , Cisteína/farmacologia , Cisteína/metabolismo , Escherichia coli , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
7.
Genes (Basel) ; 15(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38254927

RESUMO

Fabry Disease (FD) is a rare lysosomal storage disorder caused by mutations in the GLA gene on the X chromosome, leading to a deficiency in α-galactosidase A (AGAL) enzyme activity. This leads to the accumulation of glycosphingolipids, primarily globotriaosylceramide (Gb3), in vital organs such as the kidneys, heart, and nervous system. While FD was initially considered predominantly affecting males, recent studies have uncovered that heterozygous Fabry women, carrying a single mutated GLA gene, can manifest a wide array of clinical symptoms, challenging the notion of asymptomatic carriers. The mechanisms underlying the diverse clinical manifestations in females remain not fully understood due to X-chromosome inactivation (XCI). XCI also known as "lyonization", involves the random inactivation of one of the two X chromosomes. This process is considered a potential factor influencing phenotypic variation. This review delves into the complex landscape of FD in women, discussing its genetic basis, the available biomarkers, clinical manifestations, and the potential impact of XCI on disease severity. Additionally, it highlights the challenges faced by heterozygous Fabry women, both in terms of their disease burden and interactions with healthcare professionals. Current treatment options, including enzyme replacement therapy, are discussed, along with the need for healthcare providers to be well-informed about FD in women, ultimately contributing to improved patient care and quality of life.


Assuntos
Doença de Fabry , Doenças por Armazenamento dos Lisossomos , Masculino , Humanos , Feminino , Doença de Fabry/diagnóstico , Doença de Fabry/genética , Qualidade de Vida , Rim , Biomarcadores
8.
G Ital Nefrol ; 39(6)2022 Dec 21.
Artigo em Italiano | MEDLINE | ID: mdl-36655835

RESUMO

The interest in determining the number of nephrons in the kidney dates back to the 1960s, when an influential laboratory method for determining ex vivo the number of nephrons in the kidneys was described by Bricker. Over the years, various methods have been developed to estimate the number of nephrons in living beings as accurately as possible. These modern methods combine data such as the glomerular density, the percentage of glomeruli in sclerosis calculated from biopsy samples, and the kidney volume, which can be precisely estimated from magnetic resonance, CT scan, or specific ultrasound methods. As the reduction in the number of functioning nephrons is closely connected with an increased risk of progression of renal disease (especially in patients with nephrotic syndrome) and hypertension, its introduction into clinical practice could allow a precise stratification of progression risk in patients with kidney disease and a better understanding of the mechanisms that contribute to the loss of functioning nephrons.


Assuntos
Nefropatias , Nefrologistas , Humanos , Néfrons , Rim/diagnóstico por imagem , Rim/patologia , Glomérulos Renais/patologia , Nefropatias/diagnóstico por imagem , Nefropatias/patologia , Biópsia
9.
Methods Mol Biol ; 2007: 9-17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148103

RESUMO

In the context of the vascular effects of hydrogen sulfide (H2S), it is known that this gaseous endogenous biological modulator of inflammation, oxidative stress, etc. is a potent vasodilator. Chronic renal failure, a common disease affecting the aging population, is characterized by low levels of H2S in plasma and tissues, which could mediate their typical hypertensive pattern, along with other abnormalities. Lanthionine and homolanthionine, natural non-proteinogenic amino acids, are formed as side products of H2S production. Also in consideration of the intrinsic difficulties in H2S measuring, these compounds have been proposed as reliable and stable markers of H2S synthesis. However, in the setting of chronic renal failure patients on hemodialysis, they represent typical retention products (without ruling out the possibility of an increased intestinal synthesis) and prospective novel uremic toxins. Here, a method utilizing liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring ion mode has been developed and evaluated for the determination of these key H2S metabolites in plasma, by using a triple quadrupole mass spectrometer.


Assuntos
Alanina/análogos & derivados , Aminoácidos Sulfúricos/sangue , Sulfeto de Hidrogênio/sangue , Insuficiência Renal Crônica/sangue , Sulfetos/sangue , Espectrometria de Massas em Tandem/métodos , Alanina/sangue , Cromatografia Líquida/métodos , Humanos , Masculino , Diálise Renal , Insuficiência Renal Crônica/terapia
10.
Methods Protoc ; 2(1)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31164595

RESUMO

Hydrogen sulfide (H2S) is the most recently established gaseous vasodilator, enzymatically produced from cysteine metabolism, involved in a number of pathophysiological processes. However, its accurate detection in vivo is critical due to its volatility and tendency to form sulfane sulfur derivatives, thus limiting the data interpretation of its biological roles. We developed new applications of the simple and rapid method to measure H2S release in cell culture systems, based on the lead acetate strip test. This test, previously prevalently used in microbiology, was compared with the agar trap method, applied, in parallel, on both cell cultures and cell-free samples. Sulfane sulfur represents the major species derived from intracellular H2S. Various fluorescent probes are available for quantitation of H2S derivatives intracellularly. We present here an alternative to the classic imaging method for sulfane sulfur evaluation, running on a flow cytometer, based on SSP4 probe labeling. Flow cytometry turned out to be more direct, fully quantitative and less time-consuming compared to microscopy and more precise with respect to the fluorescence multi-plate reader assay. The new application methods for H2S determination appear to be fully suitable for the analysis of H2S release and sulfane sulfur content in biological samples.

11.
Int J Mol Sci ; 20(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071929

RESUMO

(1) The beneficial effects of hydrogen sulfide (H2S) on the cardiovascular and nervous system have recently been re-evaluated. It has been shown that lanthionine, a side product of H2S biosynthesis, previously used as a marker for H2S production, is dramatically increased in circulation in uremia, while H2S release is impaired. Thus, lanthionine could be classified as a novel uremic toxin. Our research was aimed at defining the mechanism(s) for lanthionine toxicity. (2) The effect of lanthionine on H2S release was tested by a novel lead acetate strip test (LAST) in EA.hy926 cell cultures. Effects of glutathione, as a redox agent, were assayed. Levels of sulfane sulfur were evaluated using the SSP4 probe and flow cytometry. Protein content and glutathionylation were analyzed by Western Blotting and immunoprecipitation, respectively. Gene expression and miRNA levels were assessed by qPCR. (3) We demonstrated that, in endothelial cells, lanthionine hampers H2S release; reduces protein content and glutathionylation of transsulfuration enzyme cystathionine-ß-synthase; modifies the expression of miR-200c and miR-423; lowers expression of vascular endothelial growth factor VEGF; increases Ca2+ levels. (4) Lanthionine-induced alterations in cell cultures, which involve both sulfur amino acid metabolism and calcium homeostasis, are consistent with uremic dysfunctional characteristics and further support the uremic toxin role of this amino acid.


Assuntos
Alanina/análogos & derivados , Cálcio/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Sulfetos/farmacologia , Uremia/tratamento farmacológico , Alanina/química , Alanina/farmacologia , Aminoácidos Sulfúricos/efeitos dos fármacos , Aminoácidos Sulfúricos/metabolismo , Linhagem Celular , Cistationina beta-Sintase/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , MicroRNAs/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Oxirredução , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Sulfetos/química , Uremia/genética , Uremia/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
13.
J Am Heart Assoc ; 8(3): e010942, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30712441

RESUMO

Background Inflammatory bowel disease ( IBD ) is characterized by a low prevalence of traditional risk factors, an increased aortic pulse-wave velocity ( aPWV ), and an excess of cardiovascular events. We have previously hypothesized that the cardiovascular risk excess reported in these patients could be explained by chronic inflammation. Here, we tested the hypothesis that chronic inflammation is responsible for the increased aPWV previously reported in IBD patients and that anti-TNFa (anti-tumor necrosis factor-alpha) therapy reduce aPWV in these patients. Methods and Results This was a multicenter longitudinal study. We enrolled 334 patients: 82 patients with ulcerative colitis, 85 patients with Crohn disease, and 167 healthy control subjects matched for age, sex, and mean blood pressure, from 3 centers in Europe, and followed them for 4 years (range, 2.5-5.7 years). At baseline, IBD patients had higher aPWV than controls. IBD patients in remission and those treated with anti-TNFa during follow-up experienced an aortic destiffening, whereas aPWV increased in those with active disease and those treated with salicylates ( P=0.01). Disease duration ( P=0.02) was associated with aortic stiffening as was, in patients with ulcerative colitis, high-sensitivity C-reactive protein during follow-up ( P=0.02). All these results were confirmed after adjustment for major confounders. Finally, the duration of anti-TNFa therapy was not associated with the magnitude of the reduction in aPWV at the end of follow-up ( P=0.85). Conclusions Long-term anti-TNFa therapy reduces aPWV , an established surrogate measure of cardiovascular risk, in patients with IBD . This suggests that effective control of inflammation may reduce cardiovascular risk in these patients.


Assuntos
Aorta Torácica/fisiopatologia , Pressão Sanguínea/fisiologia , Doenças Cardiovasculares/diagnóstico , Inflamação/fisiopatologia , Doenças Inflamatórias Intestinais/fisiopatologia , Rigidez Vascular/fisiologia , Adulto , Aorta Torácica/diagnóstico por imagem , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Endoscopia do Sistema Digestório , Feminino , Seguimentos , Humanos , Inflamação/complicações , Inflamação/diagnóstico , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico , Masculino , Estudos Prospectivos , Análise de Onda de Pulso , Fatores de Risco , Fatores de Tempo
14.
Int J Mol Sci ; 19(5)2018 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-29710830

RESUMO

The non-proteinogenic amino acid lanthionine is a byproduct of hydrogen sulfide biosynthesis: the third endogenous vasodilator gas, after nitric oxide and carbon monoxide. While hydrogen sulfide is decreased in uremic patients on hemodialysis, lanthionine is increased and has been proposed as a new uremic toxin, since it is able to impair hydrogen sulfide production in hepatoma cells. To characterize lanthionine as a uremic toxin, we explored its effects during the early development of the zebrafish (Danio rerio), a widely used model to study the organ and tissue alterations induced by xenobiotics. Lanthionine was employed at concentrations reproducing those previously detected in uremia. Light-induced visual motor response was also studied by means of the DanioVision system. Treatment of zebrafish embryos with lanthionine determined acute phenotypical alterations, on heart organogenesis (disproportion in cardiac chambers), increased heart beating, and arrhythmia. Lanthionine also induced locomotor alterations in zebrafish embryos. Some of these effects could be counteracted by glutathione. Lanthionine exerted acute effects on transsulfuration enzymes and the expression of genes involved in inflammation and metabolic regulation, and modified microRNA expression in a way comparable with some alterations detected in uremia. Lanthionine meets the criteria for classification as a uremic toxin. Zebrafish can be successfully used to explore uremic toxin effects.


Assuntos
Alanina/análogos & derivados , Modelos Animais de Doenças , Sulfetos/toxicidade , Toxinas Biológicas/toxicidade , Uremia/etiologia , Peixe-Zebra/metabolismo , Alanina/toxicidade , Animais , Organogênese/efeitos dos fármacos , Uremia/metabolismo , Uremia/patologia , Xenobióticos/toxicidade , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia
15.
J Ren Nutr ; 27(6): 453-457, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29056164

RESUMO

The triad composed by α-Klotho, fibroblast growth factor-23, and its receptor are involved in the pathogenesis of chronic kidney disease-mineral and bone disorder. A disintegrin and metalloproteinase 17 (ADAM17) is a metalloproteinase causing the proteolytic shedding of α-Klotho from the cell membrane, and its role in chronic kidney disease-mineral and bone disorder is not yet known. We studied the circulating levels of the above-mentioned mediators in patients with secondary hyperparathyroidism due to uremia, compared to control subjects, as well as in patients with primary hyperparathyroidism. We also measured the immunofluorescence pattern of the relevant tissue proteins in specimens obtained from patients undergoing parathyroid surgery for secondary compared to primary hyperparathyroidism. Results showed that α-Klotho tissue levels are reduced, in the presence of increased ADAM17 tissue levels. In addition, we showed increased serum levels of the main product of ADAM17 proteolytic activity, tumor necrosis factor-α. Thus, we found a paradoxical situation, in secondary compared to primary hyperparathyroidism, that is, that in the face of increased tumor necrosis factor-α in circulation, both soluble and tissue α-Klotho are reduced significantly, despite increased tissue ADAM17. In conclusion, tissue and serum levels of α-Klotho seem to have become independent from the regulation induced by ADAM17, which constitutes therefore another tassel in the impaired α-Klotho-FGF23 receptor axis present in uremia.


Assuntos
Proteína ADAM17/sangue , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico , Distúrbio Mineral e Ósseo na Doença Renal Crônica/genética , Glucuronidase/sangue , Proteína ADAM17/genética , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Distúrbio Mineral e Ósseo na Doença Renal Crônica/sangue , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Glucuronidase/genética , Humanos , Concentração de Íons de Hidrogênio , Hiperparatireoidismo Secundário/sangue , Hiperparatireoidismo Secundário/diagnóstico , Hiperparatireoidismo Secundário/genética , Proteínas Klotho , Hormônio Paratireóideo/sangue , Diálise Renal , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Uremia/sangue , Uremia/genética
16.
Toxins (Basel) ; 9(1)2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28075397

RESUMO

Lanthionine is a nonproteinogenic amino acid, composed of two alanine residues that are crosslinked on their ß-carbon atoms by a thioether linkage. It is biosynthesized from the condensation of two cysteine molecules, while the related compound homolanthionine is formed from the condensation of two homocysteine molecules. The reactions can be carried out by either cystathionine-ß-synthase (CBS) or cystathionine-γ-lyase (CSE) independently, in the alternate reactions of the transsulfuration pathway devoted to hydrogen sulfide biosynthesis. Low plasma total hydrogen sulfide levels, probably due to reduced CSE expression, are present in uremia, while homolanthionine and lanthionine accumulate in blood, the latter several fold. Uremic patients display a derangement of sulfur amino acid metabolism with a high prevalence of hyperhomocysteinemia. Uremia is associated with a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity, due to the accumulation of retention products. Lanthionine inhibits hydrogen sulfide production in hepatoma cells, possibly through CBS inhibition, thus providing some basis for the biochemical mechanism, which may significantly contribute to alterations of metabolism sulfur compounds in these subjects (e.g., high homocysteine and low hydrogen sulfide). We therefore suggest that lanthionine is a novel uremic toxin.


Assuntos
Alanina/análogos & derivados , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/metabolismo , Sulfetos/sangue , Uremia/metabolismo , Alanina/sangue , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Homocisteína/metabolismo , Humanos , Sulfeto de Hidrogênio/sangue , Diálise Renal , Uremia/sangue
17.
Biochimie ; 126: 97-107, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27129884

RESUMO

Dialysis patients display a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity. Among uremic toxins, homocysteine and cysteine are both substrates of cystathionine ß-synthase and cystathionine γ-lyase in hydrogen sulfide biosynthesis, leading to the formation of two sulfur metabolites, lanthionine and homolanthionine, considered stable indirect biomarkers of its production. Hydrogen sulfide is involved in the modulation of multiple pathophysiological responses. In uremia, we have demonstrated low plasma total hydrogen sulfide levels, due to reduced cystathionine γ-lyase expression. Plasma hydrogen sulfide levels were measured in hemodialysis patients and healthy controls with three different techniques in comparison, allowing to discern the different pools of this gas. The protein-bound (the one thought to be the most active) and acid-labile forms are significantly decreased, while homolanthionine, but especially lanthionine, accumulate in the blood of uremic patients. The hemodialysis regimen plays a role in determining sulfur compounds levels, and lanthionine is partially removed by a single dialysis session. Lanthionine inhibits hydrogen sulfide production in cell cultures under conditions comparable to in vivo ones. We therefore propose that lanthionine is a novel uremic toxin. The possible role of high lanthionine as a contributor to the genesis of hyperhomocysteinemia in uremia is discussed.


Assuntos
Alanina/análogos & derivados , Sulfeto de Hidrogênio/sangue , Diálise Renal , Sulfetos/sangue , Uremia/sangue , Uremia/terapia , Adulto , Idoso , Alanina/sangue , Feminino , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/terapia , Masculino , Pessoa de Meia-Idade
18.
PLoS One ; 10(8): e0135331, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26262875

RESUMO

Pleural malignant mesothelioma (MPM) is a detrimental neoplasm affecting pleural sheets and determining a high rate of mortality. In this study, we have enrolled 14 consecutive patients (13 males and 1 female) with MPM (mean age: 70.3 ± 4.6 years). We have collected serum for the determination of a miRNA profiling using a low-density microarray real time PCR system in the serum of patients and comparing it with that one of 10 control counterparts affected by not-cancer-related pleural effusions. In the patients 5 miRNAs were up-regulated (miR101, miR25, miR26b, miR335 and miR433), 2 miRNA were downregulated (miR191, miR223) and two miRNAs were expressed exclusively in patients (miR29a and miR516). Based upon the changes in the expression of the above mentioned miRNAs we detected two distinctive miRNA signatures predicting histotype and survival in these patients: I) patients with more than 3/9 upregulated miRNAs or 3/9 upregulated miRNAs and miR516 not recordable or unchanged (signature A); II) patients with at least 3/9 downregulated or unchanged miRNAs and/or miR29a downregulated (signature B). Based upon these criteria, 5 patients were stratified in signature A and the remaining 9 in signature B. Patients with signature A had a significant shorter median survival than those with signature B (7 months vs. 17 months, 95% CI: 0.098-1.72, p = 0.0021), had a sarcomatoid or mixed histological MPM subtype and were diagnosed in stage II (3/5) and stage III (2/5). In conclusion, we suggest that miRNA signature A is predictive of sarcomatoid histotype and of worse prognosis in MPM.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Mesotelioma/genética , Mesotelioma/mortalidade , MicroRNAs/genética , Neoplasias Pleurais/genética , Neoplasias Pleurais/mortalidade , Idoso , Biomarcadores Tumorais , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/patologia , Masculino , Mesotelioma/patologia , Mesotelioma Maligno , MicroRNAs/sangue , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Pleurais/patologia , Prognóstico
19.
PLoS One ; 10(1): e0116468, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25635832

RESUMO

Human mesenchymal stem cells (hMSCs), the precursors of osteoblasts during osteogenesis, play a role in the balance of bone formation and resorption, but their functioning in uremia has not been well defined. To study the effects of the uremic milieu on osteogenic properties, we applied an in vitro assay culturing hMSCs in osteogenic medium supplemented with serum from healthy donors and from uremic patients on hemodialysis. Compared to control, serum from uremic patients induces, in hMSC cultures, a modification of several key regulators of bone remodeling, in particular a reduction of the ratio Receptor Activator of Nuclear factor Kappa B Receptor (RANKL) over osteoprotegerin, indicating an adaptive response of the system to favor osteogenesis over osteoclastosis. However, the levels of osteopontin, osteocalcin, and collagen type I, are increased in cell medium, while BMP-2, and alizarin red staining were decreased, pointing to a reduction of bone formation favoring resorption. Selected uremic toxins, such as p-cresylsulfate, p-cresylglucuronide, parathyroid hormone, indoxyl sulfate, asymmetric dimethylarginine, homocysteine, were able to mimic some of the effects of whole serum from uremic patients. Serum from cinacalcet-treated patients antagonizes these effects. Hydrogen sulfide (H2S) donors as well as hemodialysis treatment are able to induce beneficial effects. In conclusion, bone modifications in uremia are influenced by the capability of the uremic milieu to alter hMSC osteogenic differentiation. Cinacalcet, H2S donors and a hemodialysis session can ameliorate the hampered calcium deposition.


Assuntos
Microambiente Celular , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Uremia/patologia , Adulto , Proteína Morfogenética Óssea 2/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Microambiente Celular/efeitos dos fármacos , Cinacalcete/farmacologia , Colágeno Tipo I/metabolismo , Meios de Cultura , Feminino , Hemofiltração , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Osteopontina/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Solubilidade , Uremia/sangue
20.
BMC Surg ; 13 Suppl 2: S4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24268127

RESUMO

BACKGROUND: In chronic hemodialysis patients with secondary hyperparathyroidism, pathological modifications of bone and mineral metabolism increase the risk of cardiovascular morbidity and mortality. Parathyroidectomy, reducing the incidence of cardiovascular events, may improve outcomes; however, its effects on long-term survival are still subject of active research. METHODS: From January 2004 to December 2006, 30 hemodialysis patients, affected by severe and unresponsive secondary hyperparathyroidism, underwent parathyroidectomy - 15 total parathyroidectomy and 15 total parathyroidectomy + subcutaneous autoimplantation. During a 5-year follow-up, patients did not receive a renal transplantation and were evaluated for biochemical modifications and major cardiovascular events - death, cardiovascular accidents, myocardial infarction and peripheral vascular disease. Results were compared with those obtained in a control group of 20 hemodialysis patients, affected by secondary hyperparathyroidism, and refusing surgical treatment, and following medical treatment only. RESULTS: The groups were comparable in terms of age, gender, dialysis vintage, and comorbidities. Postoperative cardiovascular events were observed in 18/30 - 54% - surgical patients and in 4/20 - 20%- medical patients, with a mortality rate respectively of 23.3% in the surgical group vs. 15% in the control group. Parathyroidectomy was not associated with a reduced risk of cardiovascular morbidity and survival rate was unaffected by surgical treatment. CONCLUSIONS: In secondary hyperparathyroidism hemodialysis patients affected by severe cardiovascular disease, surgery did not modify cardiovascular morbidity and mortality rates. Therefore, in secondary hyperparathyroidism hemodialysis patients, resistant to medical treatment, only an early indication to calcimimetics, or surgery, in the initial stage of chronic kidney disease - mineral bone disorders, may offer a higher long-term survival. Further studies will be useful to clarify the role of secondary hyperparathyroidism in determining unfavorable cardiovascular outcomes and mortality in hemodialysis population.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Hiperparatireoidismo Secundário/cirurgia , Paratireoidectomia , Diálise Renal , Calcimiméticos/uso terapêutico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/mortalidade , Feminino , Humanos , Hiperparatireoidismo Secundário/complicações , Hiperparatireoidismo Secundário/tratamento farmacológico , Hiperparatireoidismo Secundário/mortalidade , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA