Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(1): 147-162, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37640028

RESUMO

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Camundongos , Animais , Linfócitos T CD4-Positivos/metabolismo , Molécula de Adesão de Leucócito Ativado/metabolismo , Adesão Celular , Oligodendroglia/metabolismo
2.
Acta Neuropathol Commun ; 11(1): 108, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408029

RESUMO

Oligodendrocyte (OL) injury and loss are central features of evolving lesions in multiple sclerosis. Potential causative mechanisms of OL loss include metabolic stress within the lesion microenvironment. Here we use the injury response of primary human OLs (hOLs) to metabolic stress (reduced glucose/nutrients) in vitro to help define the basis for the in situ features of OLs in cases of MS. Under metabolic stress in vitro, we detected reduction in ATP levels per cell that precede changes in survival. Autophagy was initially activated, although ATP levels were not altered by inhibitors (chloroquine) or activators (Torin-1). Prolonged stress resulted in autophagy failure, documented by non-fusion of autophagosomes and lysosomes. Consistent with our in vitro results, we detected higher expression of LC3, a marker of autophagosomes in OLs, in MS lesions compared to controls. Both in vitro and in situ, we observe a reduction in nuclear size of remaining OLs. Prolonged stress resulted in increased ROS and cleavage of spectrin, a target of Ca2+-dependent proteases. Cell death was however not prevented by inhibitors of ferroptosis or MPT-driven necrosis, the regulated cell death (RCD) pathways most likely to be activated by metabolic stress. hOLs have decreased expression of VDAC1, VDAC2, and of genes regulating iron accumulation and cyclophilin. RNA sequencing analyses did not identify activation of these RCD pathways in vitro or in MS cases. We conclude that this distinct response of hOLs, including resistance to RCD, reflects the combined impact of autophagy failure, increased ROS, and calcium influx, resulting in metabolic collapse and degeneration of cellular structural integrity. Defining the basis of OL injury and death provides guidance for development of neuro-protective strategies.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Espécies Reativas de Oxigênio/metabolismo , Oligodendroglia/patologia , Morte Celular , Esclerose Múltipla Crônica Progressiva/patologia , Trifosfato de Adenosina/metabolismo
3.
Brain ; 145(12): 4320-4333, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35202462

RESUMO

Early multiple sclerosis lesions feature relative preservation of oligodendrocyte cell bodies with dying back retraction of their myelinating processes. Cell loss occurs with disease progression. Putative injury mediators include metabolic stress (low glucose/nutrient), pro-inflammatory mediators (interferon γ and tumour necrosis factor α), and excitotoxins (glutamate). Our objective was to compare the impact of these disease relevant mediators on the injury responses of human mature oligodendrocytes. In the current study, we determined the effects of these mediators on process extension and survival of human brain derived mature oligodendrocytes in vitro and used bulk RNA sequencing to identify distinct effector mechanisms that underlie the responses. All mediators induced significant process retraction of the oligodendrocytes in dissociated cell culture. Only metabolic stress (low glucose/nutrient) conditions resulted in delayed (4-6 days) non-apoptotic cell death. Metabolic effects were associated with induction of the integrated stress response, which can be protective or contribute to cell injury dependent on its level and duration of activation. Addition of Sephin1, an agonist of the integrated stress response induced process retraction under control conditions and further enhanced retraction under metabolic stress conditions. The antagonist ISRIB restored process outgrowth under stress conditions, and if added to already stressed cells, reduced delayed cell death and prolonged the period in which recovery could occur. Inflammatory cytokine functional effects were associated with activation of multiple signalling pathways (including Jak/Stat-1) that regulate process outgrowth, without integrated stress response induction. Glutamate application produced limited transcriptional changes suggesting a contribution of effects directly on cell processes. Our comparative studies indicate the need to consider both the specific injury mediators and the distinct cellular mechanisms of responses to them by human oligodendrocytes to identify effective neuroprotective therapies for multiple sclerosis.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Oligodendroglia/metabolismo , Encéfalo/patologia , Morte Celular , Glucose/metabolismo , Células Cultivadas
5.
Artigo em Inglês | MEDLINE | ID: mdl-32217641

RESUMO

OBJECTIVE: To determine whether there are nuclear depletion and cellular mislocalization of RNA-binding proteins (RBPs) transactivation response DNA-binding protein of 43 kDa (TDP-43), fused in sarcoma (FUS), and polypyrimidine tract-binding protein (PTB) in MS, as is the case in amyotrophic lateral sclerosis (ALS) and oligodendrocytes infected with Theiler murine encephalomyelitis virus (TMEV), we examined MS lesions and in vitro cultured primary human brain-derived oligodendrocytes. METHODS: Nuclear depletion and mislocalization of TDP-43, FUS, and PTB are thought to contribute to the pathogenesis of ALS and TMEV demyelination. The latter findings prompted us to investigate these RBPs in the demyelinated lesions of MS and in in vitro cultured human brain-derived oligodendrocytes under metabolic stress conditions. RESULTS: We found (1) mislocalized TDP-43 in oligodendrocytes in active lesions in some patients with MS; (2) decreased PTB1 expression in oligodendrocytes in mixed active/inactive demyelinating lesions; (3) decreased nuclear expression of PTB2 in neurons in cortical demyelinating lesions; and (4) nuclear depletion of TDP-43 in oligodendrocytes under metabolic stress induced by low glucose/low nutrient conditions compared with optimal culture conditions. CONCLUSION: TDP-43 has been found to have a key role in oligodendrocyte function and viability, whereas PTB is important in neuronal differentiation, suggesting that altered expression and mislocalization of these RBPs in MS lesions may contribute to the pathogenesis of demyelination and neurodegeneration. Our findings also identify nucleocytoplasmic transport as a target for treatment.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Ligação a DNA/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Oligodendroglia/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Estresse Fisiológico , Adulto , Células Cultivadas , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
J Neuroimmunol ; 331: 28-35, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29566973

RESUMO

Remyelination following myelin/oligodendrocyte injury in the central nervous system (CNS) is dependent on oligodendrocyte progenitor cells (OPCs) migrating into lesion sites, differentiating into myelinating oligodendrocytes (OLs), and ensheathing axons. Experimental models indicate that robust OPC-dependent remyelination can occur in the CNS; in contrast, histologic and imaging studies of lesions in the human disease multiple sclerosis (MS) indicate the variable extent of this response, which is particularly limited in more chronic MS lesions. Immune-mediated mechanisms can contribute either positively or negatively to the presence and functional responses of OPCs. This review addresses i) the molecular signature and functional properties of OPCs in the adult human brain; ii) the status (presence and function) of OPCs in MS lesions; iii) experimental models and in vitro data highlighting the contribution of adaptive and innate immune constituents to OPC injury and remyelination; and iv) effects of MS-directed immunotherapies on OPCs, either directly or indirectly via effects on specific immune constituents.


Assuntos
Encéfalo/citologia , Células Precursoras de Oligodendrócitos/imunologia , Imunidade Adaptativa , Adulto , Animais , Antígenos de Diferenciação/análise , Diferenciação Celular , Células Cultivadas , Glucose/farmacologia , Humanos , Imunidade Inata , Imunoterapia , Camundongos , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Proteínas do Tecido Nervoso/análise , Neuroimunomodulação , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/citologia , Ratos , Remielinização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA