RESUMO
BACKGROUND: The severity of coronavirus disease 2019 (COVID-19) is highly variable between individuals, ranging from asymptomatic infection to critical disease with acute respiratory distress syndrome requiring mechanical ventilation. Such variability stresses the need for novel biomarkers associated with disease outcome. As SARS-CoV-2 infection causes a kidney proximal tubule dysfunction with urinary loss of uric acid, we hypothesized that low serum levels of uric acid (hypouricemia) may be associated with severity and outcome of COVID-19. METHODS: In a retrospective study using two independent cohorts, we investigated and validated the prevalence, kinetics and clinical correlates of hypouricemia among patients hospitalized with COVID-19 to a large academic hospital in Brussels, Belgium. Survival analyses using Cox regression and a competing risk approach assessed the time to mechanical ventilation and/or death. Confocal microscopy assessed the expression of urate transporter URAT1 in kidney proximal tubule cells from patients who died from COVID-19. RESULTS: The discovery and validation cohorts included 192 and 325 patients hospitalized with COVID-19, respectively. Out of the 517 patients, 274 (53%) had severe and 92 (18%) critical COVID-19. In both cohorts, the prevalence of hypouricemia increased from 6% upon admission to 20% within the first days of hospitalization for COVID-19, contrasting with a very rare occurrence (< 1%) before hospitalization for COVID-19. During a median (interquartile range) follow-up of 148 days (50-168), 61 (12%) patients required mechanical ventilation and 93 (18%) died. In both cohorts considered separately and in pooled analyses, low serum levels of uric acid were strongly associated with disease severity (linear trend, P < 0.001) and with progression to death and respiratory failure requiring mechanical ventilation in Cox (adjusted hazard ratio 5.3, 95% confidence interval 3.6-7.8, P < 0.001) or competing risks (adjusted hazard ratio 20.8, 95% confidence interval 10.4-41.4, P < 0.001) models. At the structural level, kidneys from patients with COVID-19 showed a major reduction in urate transporter URAT1 expression in the brush border of proximal tubules. CONCLUSIONS: Among patients with COVID-19 requiring hospitalization, low serum levels of uric acid are common and associate with disease severity and with progression to respiratory failure requiring invasive mechanical ventilation.
Assuntos
COVID-19/metabolismo , COVID-19/fisiopatologia , Túbulos Renais Proximais/metabolismo , Índice de Gravidade de Doença , Ácido Úrico/sangue , Idoso , Bélgica , COVID-19/complicações , Estudos de Coortes , Estado Terminal/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Avaliação de Resultados em Cuidados de Saúde , Estudos RetrospectivosRESUMO
BACKGROUND: Ageing is associated with decrease in tissue glutathione that can be reduced by food fortification with the amino acid cysteine. However, cysteine is not stable in solution and generates bad taste. Cystathionine, the direct precursor of cysteine, could be a valuable alternative. AIMS: This study aimed to determine whether long-term dietary supplementation with cystathionine induces an increase in glutathione pools. METHODS: Aged rats (20.5-month-old) were fed ad libitum during 29 weeks with either a cystathionine-supplemented diet (7.3 g/kg, n = 90 rats) or a control iso-nitrogenous alanine-supplemented diet (2.9 g/kg, n = 90 rats). RESULTS: Cystathionine was detected in the plasma of the cystathionine-supplemented rats but not in the control alanine-supplemented rats. Cystathionine increased glutathione concentrations in liver, small intestine and gastrocnemius muscle (P < 0.03). No adverse effect was observed. CONCLUSION: Cystathionine supplementation being able to increase moderately glutathione in healthy old rats could be considered as a candidate for nutritional supports aiming to revert the stronger glutathione depletions occurring in unhealthy elderly.
Assuntos
Envelhecimento/metabolismo , Cistationina/administração & dosagem , Suplementos Nutricionais , Glutationa/metabolismo , Animais , Fígado/metabolismo , Masculino , Ratos , Ratos WistarRESUMO
Prolonged inactivity induces muscle loss due to an activation of proteolysis and decreased protein synthesis; the latter is also involved in the recovery of muscle mass. The aim of the present work was to explore the evolution of muscle mass and protein metabolism during immobilization and recovery and assess the effect of a nutritional strategy for counteracting muscle loss and facilitating recovery. Adult rats (6-8 months) were subjected to unilateral hindlimb casting for 8 days (I0-I8) and then permitted to recover for 10 to 40 days (R10-R40). They were fed a Control or Experimental diet supplemented with antioxidants/polyphenols (AOX) (I0 to I8), AOX and leucine (AOX + LEU) (I8 to R15) and LEU alone (R15 to R40). Muscle mass, absolute protein synthesis rate and proteasome activities were measured in gastrocnemius muscle in casted and non-casted legs in post prandial (PP) and post absorptive (PA) states at each time point. Immobilized gastrocnemius protein content was similarly reduced (-37%) in both diets compared to the non-casted leg. Muscle mass recovery was accelerated by the AOX and LEU supplementation (+6% AOX+LEU vs. Control, P<0.05 at R40) due to a higher protein synthesis both in PA and PP states (+23% and 31% respectively, Experimental vs. Control diets, P<0.05, R40) without difference in trypsin- and chymotrypsin-like activities between diets. Thus, this nutritional supplementation accelerated the recovery of muscle mass via a stimulation of protein synthesis throughout the entire day (in the PP and PA states) and could be a promising strategy to be tested during recovery from bed rest in humans.
Assuntos
Antioxidantes/farmacologia , Suplementos Nutricionais , Imobilização/efeitos adversos , Leucina/farmacologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/efeitos dos fármacos , Absorção Fisiológica , Animais , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Leucina/sangue , Masculino , Proteínas Musculares/biossíntese , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Tamanho do Órgão/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Período Pós-Prandial/efeitos dos fármacos , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacosRESUMO
The accurate estimation of total daily energy expenditure (TEE) in chronic kidney patients is essential to allow the provision of nutritional requirements; however, it remains a challenge to collect actual physical activity and resting energy expenditure in maintenance dialysis patients. The direct measurement of TEE by direct calorimetry or doubly labeled water cannot be used easily so that, in clinical practice, TEE is usually estimated from resting energy expenditure and physical activity. Prediction equations may also be used to estimate resting energy expenditure; however, their use has been poorly documented in dialysis patients. Recently, a new system called SenseWear Armband (BodyMedia, Pittsburgh, PA) was developed to assess TEE, but so far no data have been published in chronic kidney disease patients. The aim of this review is to describe new measurements of energy expenditure and physical activity in chronic kidney disease patients.