Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 92, 2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37032328

RESUMO

Neuroinflammation is an important component of many neurodegenerative diseases, whether as a primary cause or a secondary outcome. For that reason, either as diagnostic tools or to monitor progression and/or pharmacological interventions, there is a need for robust biomarkers of neuroinflammation in the brain. Mitochondrial TSPO (18 kDa Translocator protein) is one of few available biomarkers of neuroinflammation for which there are clinically available PET imaging agents. In this study, we further characterised neuroinflammation in a mouse model of prion-induced chronic neurodegeneration (ME7) including a pharmacological intervention via a CSF1R inhibitor. This was achieved by autoradiographic binding of the second-generation TSPO tracer, [3H]PBR28, along with a more comprehensive examination of the cellular contributors to the TSPO signal changes by immunohistochemistry. We observed regional increases of TSPO in the ME7 mouse brains, particularly in the hippocampus, cortex and thalamus. This increased TSPO signal was detected in the cells of microglia/macrophage lineage as well as in astrocytes, endothelial cells and neurons. Importantly, we show that the selective CSF1R inhibitor, JNJ-40346527 (JNJ527), attenuated the disease-dependent increase in TSPO signal, particularly in the dentate gyrus of the hippocampus, where JNJ527 attenuated the number of Iba1+ microglia and neurons, but not GFAP+ astrocytes or endothelial cells. These findings suggest that [3H]PBR28 quantitative autoradiography in combination with immunohistochemistry are important translational tools for detecting and quantifying neuroinflammation, and its treatments, in neurodegenerative disease. Furthermore, we demonstrate that although TSPO overexpression in the ME7 brains was driven by various cell types, the therapeutic effect of the CSF1R inhibitor was primarily to modulate TSPO expression in microglia and neurons, which identifies an important route of biological action of this particular CSF1R inhibitor and provides an example of a cell-specific effect of this type of therapeutic agent on the neuroinflammatory process.


Assuntos
Doenças Neurodegenerativas , Doenças Priônicas , Camundongos , Animais , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , Receptores de GABA/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Macrófagos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neurônios/metabolismo , Doenças Priônicas/metabolismo , Biomarcadores/metabolismo
2.
Front Immunol ; 11: 579000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162994

RESUMO

The proliferation and activation of microglia, the resident macrophages in the brain, is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and prion disease. Colony stimulating factor 1 receptor (CSF1R) is critically involved in regulating microglial proliferation, and CSF1R blocking strategies have been recently used to modulate microglia in neurodegenerative diseases. However, CSF1R is broadly expressed by many cell types and the impact of its inhibition on the innate immune system is still unclear. CSF1R can be activated by two independent ligands, CSF-1 and interleukin 34 (IL-34). Recently, it has been reported that microglia development and maintenance depend on IL-34 signaling. In this study, we evaluate the inhibition of IL-34 as a novel strategy to reduce microglial proliferation in the ME7 model of prion disease. Selective inhibition of IL-34 showed no effects on peripheral macrophage populations in healthy mice, avoiding the side effects observed after CSF1R inhibition on the systemic compartment. However, we observed a reduction in microglial proliferation after IL-34 inhibition in prion-diseased mice, indicating that microglia could be more specifically targeted by reducing IL-34. Overall, our results highlight the challenges of targeting the CSF1R/IL34 axis in the systemic and central compartments, important for framing any therapeutic effort to tackle microglia/macrophage numbers during brain disease.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Encéfalo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Interleucinas/antagonistas & inibidores , Microglia/efeitos dos fármacos , Degeneração Neural , Doenças Priônicas/tratamento farmacológico , Animais , Anticorpos Monoclonais/toxicidade , Anticorpos Neutralizantes/toxicidade , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Genes fms , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais
3.
ChemMedChem ; 13(4): 352-359, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29232489

RESUMO

Production of a biocompatible hyperpolarized bolus for signal amplification by reversible exchange (SABRE) could open the door to simple clinical diagnosis via magnetic resonance imaging. Essential to successful progression to preclinical/clinical applications is the determination of the toxicology profile of the SABRE reaction mixture. Herein, we exemplify the cytotoxicity of the SABRE approach using in vitro cell assays. We conclude that the main cause of the observed toxicity is due to the SABRE catalyst. We therefore illustrate two catalyst removal methods: one involving deactivation and ion-exchange chromatography, and the second using biphasic catalysis. These routes produce a bolus suitable for future in vivo study.


Assuntos
Complexos de Coordenação/toxicidade , Irídio/química , Testes de Toxicidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Humanos , Ácidos Nicotínicos/metabolismo , Ácidos Nicotínicos/toxicidade , Solventes/química
4.
Cell Rep ; 18(2): 391-405, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076784

RESUMO

Microglia play key roles in brain development, homeostasis, and function, and it is widely assumed that the adult population is long lived and maintained by self-renewal. However, the precise temporal and spatial dynamics of the microglial population are unknown. We show in mice and humans that the turnover of microglia is remarkably fast, allowing the whole population to be renewed several times during a lifetime. The number of microglial cells remains steady from late postnatal stages until aging and is maintained by the spatial and temporal coupling of proliferation and apoptosis, as shown by pulse-chase studies, chronic in vivo imaging of microglia, and the use of mouse models of dysregulated apoptosis. Our results reveal that the microglial population is constantly and rapidly remodeled, expanding our understanding of its role in the maintenance of brain homeostasis.


Assuntos
Envelhecimento/fisiologia , Apoptose , Encéfalo/citologia , Microglia/citologia , Animais , Contagem de Células , Proliferação de Células , Perfilação da Expressão Gênica , Homeostase , Humanos , Camundongos , Microglia/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Tempo
5.
Sci Rep ; 6: 25663, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27174644

RESUMO

Inflammation is a common neuropathological feature in several neurological disorders, including amyotrophic lateral sclerosis (ALS). We have studied the contribution of CSF1R signalling to inflammation in ALS, as a pathway previously reported to control the expansion and activation of microglial cells. We found that microglial cell proliferation in the spinal cord of SOD1(G93A) transgenic mice correlates with the expression of CSF1R and its ligand CSF1. Administration of GW2580, a selective CSF1R inhibitor, reduced microglial cell proliferation in SOD1(G93A) mice, indicating the importance of CSF1-CSF1R signalling in microgliosis in ALS. Moreover, GW2580 treatment slowed disease progression, attenuated motoneuron cell death and extended survival of SOD1(G93A) mice. Electrophysiological assessment revealed that GW2580 treatment protected skeletal muscle from denervation prior to its effects on microglial cells. We found that macrophages invaded the peripheral nerve of ALS mice before CSF1R-induced microgliosis occurred. Interestingly, treatment with GW2580 attenuated the influx of macrophages into the nerve, which was partly caused by the monocytopenia induced by CSF1R inhibition. Overall, our findings provide evidence that CSF1R signalling regulates inflammation in the central and peripheral nervous system in ALS, supporting therapeutic targeting of CSF1R in this disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Nervos Periféricos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Anisóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Progressão da Doença , Gliose/genética , Gliose/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Neurônios Motores/metabolismo , Pirimidinas/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
6.
Neurology ; 84(21): 2161-8, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25934853

RESUMO

OBJECTIVES: To determine whether the tumor necrosis factor α inhibitor etanercept is well tolerated and obtain preliminary data on its safety in Alzheimer disease dementia. METHODS: In a double-blind study, patients with mild to moderate Alzheimer disease dementia were randomized (1:1) to subcutaneous etanercept (50 mg) once weekly or identical placebo over a 24-week period. Tolerability and safety of this medication was recorded including secondary outcomes of cognition, global function, behavior, and systemic cytokine levels at baseline, 12 weeks, 24 weeks, and following a 4-week washout period. This trial is registered with EudraCT (2009-013400-31) and ClinicalTrials.gov (NCT01068353). RESULTS: Forty-one participants (mean age 72.4 years; 61% men) were randomized to etanercept (n = 20) or placebo (n = 21). Etanercept was well tolerated; 90% of participants (18/20) completed the study compared with 71% (15/21) in the placebo group. Although infections were more common in the etanercept group, there were no serious adverse events or new safety concerns. While there were some interesting trends that favored etanercept, there were no statistically significant changes in cognition, behavior, or global function. CONCLUSIONS: This study showed that subcutaneous etanercept (50 mg/wk) was well tolerated in this small group of patients with Alzheimer disease dementia, but a larger more heterogeneous group needs to be tested before recommending its use for broader groups of patients. CLASSIFICATION OF EVIDENCE: This study shows Class I evidence that weekly subcutaneous etanercept is well tolerated in Alzheimer disease dementia.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Imunoglobulina G/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Idoso , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/efeitos adversos , Método Duplo-Cego , Etanercepte , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/efeitos adversos , Injeções Subcutâneas , Masculino , Receptores do Fator de Necrose Tumoral/administração & dosagem , Resultado do Tratamento
7.
Neurosci Lett ; 589: 138-43, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25623034

RESUMO

Infection of mice with the ME7 prion agent results in well-characterised neuropathological changes, which includes vacuolation, neurodegeneration and synaptic degeneration. Presynaptic dysfunction and degeneration is apparent through the progressive reduction in synaptic vesicle proteins and eventual loss of synapses. Cysteine string protein alpha (CSPα), which regulates refolding pathways at the synapse, exhibits an early decline during chronic neurodegeneration implicating it as a mediator of disease mechanisms. CSPα null mice develop a progressive neuronal dysfunction through disruption of the integrity of presynaptic function. In this study, we investigated whether reduced expression of CSPα would exacerbate ME7 prion disease. Wild type (+/+) and heterozygous (+/-) mice, which express about a ∼50% reduction in CSPα, were used as a distinct genetic background on which to impose prion disease. +/+ and +/ - mice were inoculated with brain homogenate from either a normal mouse brain (NBH) or from the brain of a mouse which displayed clinical signs of prion disease (ME7). Behavioural tests, western blotting and immunohistochemistry, which resolve key elements of synaptic dysfunction, were used to assess the effect of reduced CSPα on disease. Behavioural tests revealed no change in the progression of disease in ME7-CSPα +/- animals compared to ME7-CSPα +/+ animals. In addition, the accumulation of misfolded PrP(Sc), the diseased associated gliosis or synaptic loss were not different. Thus, the misfolding events that generate synaptic dysfunction and lead to synaptic loss are unlikely to be mediated by a disease associated decrease in the refolding pathways associated with CSPα.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Doenças Priônicas/metabolismo , Sinapses/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Doenças Priônicas/psicologia , Especificidade da Espécie
8.
Sci Rep ; 4: 7520, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25531807

RESUMO

In neuroscience it is a technical challenge to identify and follow the temporal and spatial distribution of cells as they differentiate. We hypothesised that RGB marking, the tagging of individual cells with unique hues resulting from simultaneous expression of the three basic colours red, green and blue, provides a convenient toolbox for the study of the CNS anatomy at the single-cell level. Using γ-retroviral and lentiviral vector sets we describe for the first time the in-vivo multicolour RGB marking of neurons in the adult brain. RGB marking also enabled us to track the spatial and temporal fate of neural stem cells in the adult brain. The application of different viral envelopes and promoters provided a useful approach to track the generation of neurons vs. glial cells at the neurogenic niche, allowing the identification of the prominent generation of new astrocytes to the striatum. Multicolour RGB marking could serve as a universal and reproducible method to study and manipulate the CNS at the single-cell level, in both health and disease.


Assuntos
Encéfalo/citologia , Gammaretrovirus , Vetores Genéticos , Lentivirus , Imagem Molecular , Neurônios/citologia , Animais , Encéfalo/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Células NIH 3T3 , Neurônios/metabolismo
9.
Brain ; 137(Pt 8): 2312-28, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24941947

RESUMO

The study of neurogenesis during chronic neurodegeneration is crucial in order to understand the intrinsic repair mechanisms of the brain, and key to designing therapeutic strategies. In this study, using an experimental model of progressive chronic neurodegeneration, murine prion disease, we define the temporal dynamics of the generation, maturation and integration of new neurons in the hippocampal dentate gyrus, using dual pulse-chase, multicolour γ-retroviral tracing, transmission electron microscopy and patch-clamp. We found increased neurogenesis during the progression of prion disease, which partially counteracts the effects of chronic neurodegeneration, as evidenced by blocking neurogenesis with cytosine arabinoside, and helps to preserve the hippocampal function. Evidence obtained from human post-mortem samples, of both variant Creutzfeldt-Jakob disease and Alzheimer's disease patients, also suggests increased neurogenic activity. These results open a new avenue into the exploration of the effects and regulation of neurogenesis during chronic neurodegeneration, and offer a new model to reproduce the changes observed in human neurodegenerative diseases.


Assuntos
Hipocampo/patologia , Vias Neurais/patologia , Doenças Neurodegenerativas/patologia , Neurogênese/fisiologia , Doenças Priônicas/patologia , Bancos de Tecidos , Adulto , Idoso , Doença de Alzheimer/patologia , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacologia , Proliferação de Células , Doença Crônica , Síndrome de Creutzfeldt-Jakob/patologia , Citarabina/administração & dosagem , Citarabina/farmacologia , Giro Denteado/citologia , Giro Denteado/patologia , Giro Denteado/ultraestrutura , Modelos Animais de Doenças , Progressão da Doença , Feminino , Vetores Genéticos , Hipocampo/citologia , Hipocampo/ultraestrutura , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fibras Musgosas Hipocampais/ultraestrutura , Vias Neurais/citologia , Vias Neurais/ultraestrutura , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/ultraestrutura , Técnicas de Rastreamento Neuroanatômico , Técnicas de Patch-Clamp , Príons/patogenicidade , Fatores de Tempo , Adulto Jovem
10.
Glia ; 62(7): 1041-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24648328

RESUMO

The expansion of the microglial population is one of the hallmarks of numerous brain disorders. The addition of circulating progenitors to the pool of brain macrophages can contribute to the progression of brain disease and needs to be precisely defined to better understand the evolution of the glial and inflammatory reactions in the brain. We have analyzed the degree of infiltration/recruitment of circulating monocytes to the microglial pool, in a prion disease model of chronic neurodegeneration. Our results indicate a minimal/absent level of CCR2-dependent recruitment of circulating monocytes, local proliferation of microglia is the main driving force maintaining the amplification of the population. A deficiency in CCR2, and thus the absence of recruitment of circulating monocytes, does not impact microglial dynamics, the inflammatory profile or the temporal behavioral course of prion disease. However, the lack of CCR2 has unexpected effects including the failure to recruit perivascular macrophages in diseased but not healthy CNS and a small reduction in microglia proliferation. These data define the composition of the CNS-resident macrophage populations in prion disease and will help to understand the dynamics of the CNS innate immune response during chronic neurodegeneration.


Assuntos
Região CA1 Hipocampal/imunologia , Macrófagos/imunologia , Microglia/imunologia , Monócitos/imunologia , Doenças Priônicas/imunologia , Receptores CCR2/metabolismo , Animais , Antígenos CD34/metabolismo , Comportamento Animal/fisiologia , Região CA1 Hipocampal/irrigação sanguínea , Proliferação de Células , Doença Crônica , Modelos Animais de Doenças , Progressão da Doença , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/imunologia , Receptores CCR2/genética
11.
J Biol Chem ; 289(7): 4532-45, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24366862

RESUMO

Prion diseases are characterized by accumulation of misfolded protein, gliosis, synaptic dysfunction, and ultimately neuronal loss. This sequence, mirroring key features of Alzheimer disease, is modeled well in ME7 prion disease. We used iTRAQ(TM)/mass spectrometry to compare the hippocampal proteome in control and late-stage ME7 animals. The observed changes associated with reactive glia highlighted some specific proteins that dominate the proteome in late-stage disease. Four of the up-regulated proteins (GFAP, high affinity glutamate transporter (EAAT-2), apo-J (Clusterin), and peroxiredoxin-6) are selectively expressed in astrocytes, but astrocyte proliferation does not contribute to their up-regulation. The known functional role of these proteins suggests this response acts against protein misfolding, excitotoxicity, and neurotoxic reactive oxygen species. A recent convergence of genome-wide association studies and the peripheral measurement of circulating levels of acute phase proteins have focused attention on Clusterin as a modifier of late-stage Alzheimer disease and a biomarker for advanced neurodegeneration. Since ME7 animals allow independent measurement of acute phase proteins in the brain and circulation, we extended our investigation to address whether changes in the brain proteome are detectable in blood. We found no difference in the circulating levels of Clusterin in late-stage prion disease when animals will show behavioral decline, accumulation of misfolded protein, and dramatic synaptic and neuronal loss. This does not preclude an important role of Clusterin in late-stage disease, but it cautions against the assumption that brain levels provide a surrogate peripheral measure for the progression of brain degeneration.


Assuntos
Astrócitos/metabolismo , Clusterina/biossíntese , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Doenças Priônicas/metabolismo , Proteoma/biossíntese , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Humanos , Camundongos , Doenças Priônicas/induzido quimicamente , Doenças Priônicas/patologia
12.
Semin Immunopathol ; 35(5): 601-12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23732506

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), play an important role in CNS homeostasis during development, adulthood and ageing. Their phenotype and function have been widely studied, but most studies have focused on their local interactions in the CNS. Microglia are derived from a particular developmental niche, are long-lived, locally replaced and form a significant part of the communication route between the peripheral immune system and the CNS; all these components of microglia biology contribute to maintaining homeostasis. Microglia function is tightly regulated by the CNS microenvironment, and increasing evidence suggests that disturbances, such as neurodegeneration and ageing, can have profound consequences for microglial phenotype and function. We describe the possible biological mechanisms underlying the altered threshold for microglial activation, also known as 'microglial priming', seen in CNS disease and ageing and consider how priming may contribute to turning immune-to-brain communication from a homeostatic pathway into a maladaptive response that contributes to symptoms and progression of diseases of the CNS.


Assuntos
Envelhecimento/imunologia , Encéfalo/imunologia , Macrófagos/imunologia , Microglia/imunologia , Doenças Neurodegenerativas/imunologia , Animais , Encéfalo/citologia , Encéfalo/embriologia , Humanos , Inflamação/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/citologia , Camundongos , Microglia/citologia
13.
J Neurosci ; 33(6): 2481-93, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23392676

RESUMO

An important component of chronic neurodegenerative diseases is the generation of an innate inflammatory response within the CNS. Microglial and astroglial cells play a key role in the development and maintenance of this inflammatory response, showing enhanced proliferation and activation. We studied the time course and regulation of microglial proliferation, using a mouse model of prion disease. Our results show that the proliferation of resident microglial cells accounts for the expansion of the population during the development of the disease. We identify the pathway regulated by the activation of CSF1R and the transcription factors PU.1 and C/EBPα as the molecular regulators of the proliferative response, correlating with the chronic human neurodegenerative conditions variant Creutzfeldt-Jakob disease and Alzheimer's disease. We show that targeting the activity of CSF1R inhibits microglial proliferation and slows neuronal damage and disease progression. Our results demonstrate that microglial proliferation is a major component in the evolution of chronic neurodegeneration, with direct implications for understanding the contribution of the CNS innate immune response to disease progression.


Assuntos
Proliferação de Células , Microglia/patologia , Doenças Neurodegenerativas/patologia , Adulto , Idoso , Animais , Doença Crônica , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/fisiologia , Pessoa de Meia-Idade , Doenças Neurodegenerativas/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
14.
Cold Spring Harb Perspect Med ; 2(9): a009373, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22951445

RESUMO

The resident macrophages of the brain--the microglia--are morphologically activated during the progression of Parkinson's disease. Observational studies in human postmortem material and studies in animal models seek to define the contribution that this innate immune response might make to the pathogenesis and rate of progression of Parkinson's disease. We review here some of the key conceptual issues that need to be considered when performing these studies. We highlight the fact that most postmortem studies have not given due consideration to common comorbidities present in patients with Parkinson's disease and also the limitations of attempting to extrapolate from animal models to a chronic progressive neurodegenerative disease in humans that lasts for many years.


Assuntos
Encefalite/imunologia , Imunidade Inata/imunologia , Microglia/imunologia , Neurite (Inflamação)/imunologia , Doença de Parkinson/imunologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Camundongos , Degeneração Neural/imunologia , Linfócitos T/imunologia , Toxinas Biológicas/toxicidade
15.
J Neurochem ; 121(5): 738-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22404382

RESUMO

Docosahexaenoic acid (DHA, 22 : 6) and eicosapentaenoic acid (EPA, 20 : 5) are omega-3 polyunsaturated fatty acids (n-3 PUFAs) with distinct anti-inflammatory properties. Both have neuroprotective effects acutely following spinal cord injury (SCI). We examined the effect of intravenous DHA and EPA on early inflammatory events after SCI. Saline, DHA or EPA (both 250 nmol/kg) were administered 30 min after T12 compression SCI, to female Sprague-Dawley rats. DHA significantly reduced the number of neutrophils to some areas of the injured epicentre at 4 h and 24 h. DHA also reduced C-reactive protein plasma levels, whereas EPA did not significantly reduce neutrophils or C-reactive protein. Laminectomy and SCI elicited a sustained inflammatory response in the liver, which was not reversed by the PUFAs. The chemokine KC/GRO/CINC and the cytokine IL-6 provide gradients for chemotaxis of neutrophils to the epicentre. At 4 h after injury, there was a significant increase in IL-6, KC/GRO/CINC, IL-1ß and tumour necrosis factor-α in the epicentre, with a return to baseline at 24 h. Neither DHA nor EPA returned their levels to control values. These results indicate that the acute neuroprotective effects of n-3 PUFAs in rat compression SCI may be only partly attributed to reduction of some of the early inflammatory events occurring after injury.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Inflamação/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Animais , Citocinas/biossíntese , Feminino , Imuno-Histoquímica , Inflamação/etiologia , Ratos , Ratos Sprague-Dawley , Compressão da Medula Espinal/tratamento farmacológico , Compressão da Medula Espinal/imunologia , Compressão da Medula Espinal/patologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia
16.
J Neurochem ; 121(5): 785-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22380637

RESUMO

Delayed cerebral ischemia resulting from extracellular hemoglobin is an important determinant of outcome in subarachnoid hemorrhage. Hemoglobin is scavenged by the CD163-haptoglobin system in the circulation, but little is known about this scavenging pathway in the human CNS. The components of this system were analyzed in normal cerebrospinal fluid and after subarachnoid hemorrhage. The intrathecal presence of the CD163-haptoglobin-hemoglobin scavenging system was unequivocally demonstrated. The resting capacity of the CD163-haptoglobin-hemoglobin system in the normal CNS was 50 000-fold lower than that of the circulation. After subarachnoid hemorrhage, the intrathecal CD163-haptoglobin-hemoglobin system was saturated, as shown by the presence of extracellular hemoglobin despite detectable haptoglobin. Hemoglobin efflux from the CNS was evident, enabling rescue hemoglobin scavenging by the systemic circulation. Therefore, the CNS is not capable of dealing with significant intrathecal hemolysis. Potential therapeutic options to prevent delayed cerebral ischemia ought to concentrate on augmenting the capacity of the intrathecal CD163-haptoglobin-hemoglobin scavenging system and strategies to encourage hemoglobin efflux from the brain.


Assuntos
Antígenos CD/líquido cefalorraquidiano , Antígenos de Diferenciação Mielomonocítica/líquido cefalorraquidiano , Haptoglobinas/líquido cefalorraquidiano , Hemoglobinas/líquido cefalorraquidiano , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Isquemia Encefálica/líquido cefalorraquidiano , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/etiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Superfície Celular , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/imunologia
18.
ASN Neuro ; 2(5): e00047, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20967131

RESUMO

Chronic neurodegenerative diseases of the CNS (central nervous system) are characterized by the loss of neurons. There is, however, growing evidence to show that an early stage of this process involves degeneration of presynaptic terminals prior to the loss of the cell body. Synaptic plasticity in CNS pathology has been associated with microglia and the phenomenon of synaptic stripping. We review here the evidence for the involvement of microglia in synaptic stripping and synapse degeneration and we conclude that this is a case of guilt by association. In disease models of chronic neurodegeneration, there is no evidence that microglia play an active role in either synaptic stripping or synapse degeneration, but the degeneration of the synapse and the envelopment of a degenerating terminal appears to be a neuron autonomous event. We highlight here some of the gaps in our understanding of synapse degeneration in chronic neurodegenerative disease.


Assuntos
Microglia/patologia , Terminações Pré-Sinápticas/patologia , Sinapses/patologia , Animais , Humanos , Microglia/fisiologia , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
19.
Annu Rev Immunol ; 27: 119-45, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19302036

RESUMO

Microglia, the macrophages of the central nervous system parenchyma, have in the normal healthy brain a distinct phenotype induced by molecules expressed on or secreted by adjacent neurons and astrocytes, and this phenotype is maintained in part by virtue of the blood-brain barrier's exclusion of serum components. Microglia are continually active, their processes palpating and surveying their local microenvironment. The microglia rapidly change their phenotype in response to any disturbance of nervous system homeostasis and are commonly referred to as activated on the basis of the changes in their morphology or expression of cell surface antigens. A wealth of data now demonstrate that the microglia have very diverse effector functions, in line with macrophage populations in other organs. The term activated microglia needs to be qualified to reflect the distinct and very different states of activation-associated effector functions in different disease states. Manipulating the effector functions of microglia has the potential to modify the outcome of diverse neurological diseases.


Assuntos
Sistema Nervoso Central/fisiologia , Macrófagos/fisiologia , Microglia/fisiologia , Doenças Neurodegenerativas/imunologia , Animais , Barreira Hematoencefálica/fisiologia , Comunicação Celular/fisiologia , Humanos , Ativação de Macrófagos , Neurotransmissores/fisiologia , Transdução de Sinais/fisiologia
20.
Biol Psychiatry ; 65(4): 304-12, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18801476

RESUMO

BACKGROUND: Chronic neurodegeneration results in microglial activation, but the contribution of inflammation to the progress of neurodegeneration remains unclear. We have shown that microglia express low levels of proinflammatory cytokines during chronic neurodegeneration but are "primed" to produce a more proinflammatory profile after systemic challenge with bacterial endotoxin (lipopolysaccharide [LPS]). METHODS: Here, we investigated whether intraperitoneal (IP) challenge with LPS, to mimic systemic infection, in the early stages of prion disease can 1) produce exaggerated acute behavioral (n = 9) and central nervous system (CNS) inflammatory (n = 4) responses in diseased animals compared with control animals, and 2) whether a single LPS challenge can accelerate disease progression (n = 34-35). RESULTS: Injection of LPS (100 microg/kg), at 12 weeks postinoculation (PI), resulted in heightened CNS interleukin-1 beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and interferon-beta (IFN-beta) transcription and microglial IL-1beta translation in prion-diseased animals relative to control animals. This inflammation caused exaggerated impairments in burrowing and locomotor activity, and induced hypothermia and cognitive changes in prion-diseased animals that were absent in LPS-treated control animals. At 15 weeks PI, LPS (500 microg/kg) acutely impaired motor coordination and muscle strength in prion-diseased but not in control animals. After recovery, these animals also showed earlier onset of disease-associated impairments on these parameters. CONCLUSIONS: These data demonstrate that transient systemic inflammation superimposed on neurodegenerative disease acutely exacerbates cognitive and motor symptoms of disease and accelerates disease progression. These deleterious effects of systemic inflammation have implications for the treatment of chronic neurodegeneration and associated delirium.


Assuntos
Comportamento Animal/fisiologia , Cognição/fisiologia , Inflamação/complicações , Inflamação/psicologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/psicologia , Animais , Temperatura Corporal/efeitos dos fármacos , Feminino , Imuno-Histoquímica , Infusões Parenterais , Lipopolissacarídeos/farmacologia , Estudos Longitudinais , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA